
Package: Require (via r-universe)
September 6, 2024

Type Package

Title Installing and Loading R Packages for Reproducible Workflows

Description A single key function, 'Require' that makes rerun-tolerant
versions of 'install.packages' and `require` for CRAN packages,
packages no longer on CRAN (i.e., archived), specific versions
of packages, and GitHub packages. This approach is developed to
create reproducible workflows that are flexible and fast enough
to use while in development stages, while able to build
snapshots once a stable package collection is found. As with
other functions in a reproducible workflow, this package
emphasizes functions that return the same result whether it is
the first or subsequent times running the function, with
subsequent times being sufficiently fast that they can be run
every time without undue waiting burden on the user or
developer.

URL https://Require.predictiveecology.org,

https://github.com/PredictiveEcology/Require

Date 2024-08-06

Version 1.0.1

Depends R (>= 4.0)

Imports data.table (>= 1.10.4), methods, sys, tools, utils

Suggests covr, curl, diffobj, fpCompare, gitcreds, httr, pak,
parallel, rematch2, rmarkdown, knitr, rlang, roxygen2,
rprojroot, testthat (>= 3.0.0), tibble, waldo, withr

Encoding UTF-8

Language en-CA

License GPL-3

VignetteBuilder knitr, rmarkdown

BugReports https://github.com/PredictiveEcology/Require/issues

ByteCompile yes

1

https://Require.predictiveecology.org
https://github.com/PredictiveEcology/Require
https://github.com/PredictiveEcology/Require/issues

2 Contents

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Collate 'CRAN.R' 'Require-helpers.R' 'Require-package.R' 'messages.R'
'Require2.R' 'RequireOptions.R' 'envs.R' 'extract.R'
'helpers.R' 'pak.R' 'pkgDep.R' 'pkgDep3.R' 'pkgSnapshot.R'
'setLibPaths.R' 'setup.R' 'zzz.R'

Config/testthat/edition 3

Repository https://predictiveecology.r-universe.dev

RemoteUrl https://github.com/PredictiveEcology/Require

RemoteRef development

RemoteSha 3940f0619c50400661c2a9b6bdeaa83f3928669f

Contents
Require-package . 3
.downloadFileMasterMainAuth . 8
.installed.pkgs . 10
availablePackagesOverride . 11
availableVersionOK . 12
cacheClearPackages . 12
cacheDefaultDir . 13
cacheDir . 13
cacheGetOptionCachePkgDir . 14
cachePurge . 15
checkLibPaths . 15
checkPath . 16
compareVersion2 . 17
dealWithMissingLibPaths . 18
DESCRIPTIONFileVersionV . 19
detachAll . 20
dlArchiveVersionsAvailable . 21
doLibPaths . 22
envPkgCreate . 22
envPkgDepDepsCreate . 23
envPkgDepDESCFileCreate . 23
extractPkgName . 23
getDeps . 24
invertList . 25
joinToAvailablePackages . 26
linkOrCopy . 26
masterMainToHead . 27
messageDF . 27
modifyList2 . 29
normPath . 30
paddedFloatToChar . 31
pakEnv . 32

Require-package 3

parseGitHub . 32
pkgDepEnv . 33
pkgDepIfDepRemoved . 33
pkgDepTopoSort . 34
pkgSnapshot . 38
RequireOptions . 40
rmBase . 42
rversions . 42
setdiffNamed . 43
setLibPaths . 43
setLinuxBinaryRepo . 45
setup . 46
sourcePkgs . 47
splitKeepOrderAndDTIntegrity . 47
sysInstallAndDownload . 48
tempdir2 . 49
tempfile2 . 50
trimVersionNumber . 50
updatePackages . 51

Index 52

Require-package Require: Installing and Loading R Packages for Reproducible Work-
flows

Description

A single key function, ’Require’ that makes rerun-tolerant versions of ’install.packages’ and ‘re-
quire‘ for CRAN packages, packages no longer on CRAN (i.e., archived), specific versions of
packages, and GitHub packages. This approach is developed to create reproducible workflows that
are flexible and fast enough to use while in development stages, while able to build snapshots once a
stable package collection is found. As with other functions in a reproducible workflow, this package
emphasizes functions that return the same result whether it is the first or subsequent times running
the function, with subsequent times being sufficiently fast that they can be run every time without
undue waiting burden on the user or developer.

This is an "all in one" function that will run install.packages for CRAN and GitHub https:
//github.com/ packages and will install specific versions of each package if versions are specified
either via an (in)equality (e.g., "glue (>=1.6.2)" or "glue (==1.6.2)" for an exact version) or
with a packageVersionFile. If require = TRUE, the default, the function will then run require
on all named packages that satisfy their version requirements. If packages are already installed
(packages supplied), and their optional version numbers are satisfied, then the "install" component
will be skipped.

https://github.com/
https://github.com/

4 Require-package

Usage

Require(
packages,
packageVersionFile,
libPaths,
install_githubArgs = list(),
install.packagesArgs = list(INSTALL_opts = "--no-multiarch"),
standAlone = getOption("Require.standAlone", FALSE),
install = getOption("Require.install", TRUE),
require = getOption("Require.require", TRUE),
repos = getOption("repos"),
purge = getOption("Require.purge", FALSE),
verbose = getOption("Require.verbose", FALSE),
type = getOption("pkgType"),
upgrade = FALSE,
returnDetails = FALSE,
...

)

Install(
packages,
packageVersionFile,
libPaths,
install_githubArgs = list(),
install.packagesArgs = list(INSTALL_opts = "--no-multiarch"),
standAlone = getOption("Require.standAlone", FALSE),
install = TRUE,
repos = getOption("repos"),
purge = getOption("Require.purge", FALSE),
verbose = getOption("Require.verbose", FALSE),
type = getOption("pkgType"),
upgrade = FALSE,
...

)

Arguments

packages Either a character vector of packages to install via install.packages, then load
(i.e., with library), or, for convenience, a vector or list (using c or list) of un-
quoted package names to install and/or load (as in require, but vectorized).
Passing vectors of names may not work in all cases, so user should confirm
before relying on this behaviour in operational code. In the case of a GitHub
package, it will be assumed that the name of the repository is the name of the
package. If this is not the case, then pass a named character vector here, where
the names are the package names that could be different than the GitHub repos-
itory name.

packageVersionFile

Character string of a file name or logical. If TRUE, then this function will load

Require-package 5

the default file, getOption("Require.packageVersionFile"). If this argu-
ment is provided, then this will override any packages passed to packages.
By default, Require will attempt to resolve dependency violations (i.e., if this
packageVersionFile specifies a version of a package that violates the depen-
dency specification of another package). If a user wishes to attempt to install the
packageVersionFile without assessing the dependencies, set dependencies =
FALSE.

libPaths The library path (or libraries) where all packages should be installed, and looked
for to load (i.e., call library). This can be used to create isolated, stand alone
package installations, if used with standAlone = TRUE. Currently, the path sup-
plied here will be prepended to .libPaths() (temporarily during this call)
to Require if standAlone = FALSE or will set (temporarily) .libPaths() to
c(libPaths, tail(libPaths(), 1) to keep base packages.

install_githubArgs

Deprecated. Values passed here are merged with install.packagesArgs, with
the install.packagesArgs taking precedence if conflicting.

install.packagesArgs

List of optional named arguments, passed to install.packages. Default is
only --no-multi-arch, meaning that only the current architecture will be built
and installed (e.g., 64 bit, not 32 bit, in many cases).

standAlone Logical. If TRUE, all packages will be installed to and loaded from the libPaths
only. NOTE: If TRUE, THIS WILL CHANGE THE USER’S .libPaths(), sim-
ilar to e.g., the checkpoint package. If FALSE, then libPath will be prepended
to .libPaths() during the Require call, resulting in shared packages, i.e., it
will include the user’s default package folder(s). This can be create dramatically
faster installs if the user has a substantial number of the packages already in
their personal library. Default FALSE to minimize package installing.

install Logical or "force". If FALSE, this will not try to install anything. If "force",
then it will force installation of requested packages, mimicking a call to e.g.,
install.packages. If TRUE, the default, then this function will try to install
any missing packages or dependencies.

require Logical or character string. If TRUE, the default, then the function will attempt
to call require on all requested packages, possibly after they are installed. If a
character string, then it will only call require on those specific packages (i.e., it
will install the ones listed in packages, but load the packages listed in require)

repos The remote repository (e.g., a CRAN mirror), passed to either install.packages,
install_github or installVersions.

purge Logical. Should all caches be purged? Default is getOption("Require.purge",
FALSE). There is a lot of internal caching of results throughout the Require
package. These help with speed and reduce calls to internet sources. However,
sometimes these caches must be purged. The cached values are renewed when
found to be too old, with the age limit. This maximum age can be set in seconds
with the environment variable R_AVAILABLE_PACKAGES_CACHE_CONTROL_MAX_AGE,
or if unset, defaults to 3600 (one hour – see utils::available.packages).
Internally, there are calls to available.packages.

6 Require-package

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

type See utils::install.packages

upgrade When FALSE, the default, will only upgrade a package when the version on in
the local library is not adequate for the version requirements of the packages.
Note: for convenience, update can be used for this argument.

returnDetails Logical. If TRUE the return object will have an attribute: attr(.., "Require")
which has lots of information about the processes of the installs.

... Passed to install.packages. Good candidates are e.g., type or dependencies.
This can be used with install_githubArgs or install.packageArgs which
give individual options for those 2 internal function calls.

Details

Install is the same as Require(..., require = FALSE), for convenience.

Value

Require is intended to replace base::require, thus it returns a logical, named vector indicating
whether the named packages have been loaded. Because Require also has the ability to install
packages, a return value of FALSE does not mean that it did not install correctly; rather, it means
it did not attach with require, which could be because it did not install correctly, or also because
e.g., require = FALSE.

standAlone will either put the Required packages and their dependencies all within the libPaths
(if TRUE) or if FALSE will only install packages and their dependencies that are otherwise not in-
stalled in .libPaths()[1], i.e., the current active R package directory. Any packages or depen-
dencies that are not yet installed will be installed in libPaths.

GitHub Package

Follows remotes::install_github standard. As with remotes::install_github, it is not pos-
sible to specify a past version of a GitHub package unless that version is a tag or the user passes
the SHA that had that package version. Similarly, if a developer does a local install e.g., via
pkgload::install, of an active project, this package will not be able know of the GitHub state,
and thus pkgSnapshot will not be able to recover this state as there is no SHA associated with a
local installation. Use Require (or remotes::install_github) to create a record of the GitHub
state.

Package Snapshots

To build a snapshot of the desired packages and their versions, first run Require with all packages,
then pkgSnapshot. If a libPaths is used, it must be used in both functions.

Require-package 7

Mutual Dependencies

This function works best if all required packages are called within one Require call, as all de-
pendencies can be identified together, and all package versions will be addressed (if there are no
conflicts), allowing a call to pkgSnapshot() to take a snapshot or "record" of the current collection
of packages and versions.

Local Cache of Packages

When installing new packages, Require will put all source and binary files in an R-version specific
subfolder of getOption("Require.cachePkgDir") whose default is RPackageCache(), meaning
cache packages locally in a project-independent location, and will reuse them if needed. To turn
off this feature, set options("Require.cachePkgDir" = FALSE).

Note

For advanced use and diagnosis, the user can set verbose = TRUE or 1 or 2 (or via options("Require.verbose")).
This will attach an attribute attr(obj, "Require") to the output of this function.

Author(s)

Maintainer: Eliot J B McIntire <eliot.mcintire@canada.ca> (ORCID)

Other contributors:

• Alex M Chubaty <achubaty@for-cast.ca> (ORCID) [contributor]

• Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Re-
sources Canada [copyright holder]

See Also

Useful links:

• https://Require.predictiveecology.org

• https://github.com/PredictiveEcology/Require

• Report bugs at https://github.com/PredictiveEcology/Require/issues

Examples

Not run:
opts <- Require:::.setupExample()

library(Require)
getCRANrepos(ind = 1)
Require("utils") # analogous to require(stats), but it checks for
pkg dependencies, and installs them, if missing

unquoted version
Require(c(tools, utils))

if (Require:::.runLongExamples()) {
Install in a new local library (libPaths)

https://orcid.org/0000-0002-6914-8316
https://orcid.org/0000-0001-7146-8135
https://Require.predictiveecology.org
https://github.com/PredictiveEcology/Require
https://github.com/PredictiveEcology/Require/issues

8 .downloadFileMasterMainAuth

tempPkgFolder <- file.path(tempdir(), "Require/Packages")
use standAlone, means it will put it in libPaths, even if it already exists
in another local library (e.g., personal library)
Install("crayon", libPaths = tempPkgFolder, standAlone = TRUE)

Mutual dependencies, only installs once -- e.g., cli
tempPkgFolder <- file.path(tempdir(), "Require/Packages")
Install(c("cli", "R6"), libPaths = tempPkgFolder, standAlone = TRUE)

Mutual dependencies, only installs once -- e.g., rlang
tempPkgFolder <- file.path(tempdir(), "Require/Packages")
Install(c("rlang", "ellipsis"), libPaths = tempPkgFolder, standAlone = TRUE)

###
Isolated projects -- Use a project folder and pass to libPaths or set .libPaths()
###
GitHub packages
if (requireNamespace("gitcreds", quietly = TRUE)) {

#if (is(try(gitcreds::gitcreds_get(), silent = TRUE), "gitcreds")) {
ProjectPackageFolder <- file.path(tempdir(), "Require/ProjectA")
if (requireNamespace("curl")) {

Require("PredictiveEcology/fpCompare@development",
libPaths = ProjectPackageFolder,

)
}

No install because it is there already
Install("PredictiveEcology/fpCompare@development",

libPaths = ProjectPackageFolder,
) # the latest version on GitHub

##
Mixing and matching GitHub, CRAN, with and without version numbering
##
pkgs <- c(

"remotes (<=2.4.1)", # old version
"digest (>= 0.6.28)", # recent version

"PredictiveEcology/fpCompare@a0260b8476b06628bba0ae73af3430cce9620ca0" # exact version
)
Require::Require(pkgs, libPaths = ProjectPackageFolder)

#}
}
Require:::.cleanup(opts)

}

End(Not run)

.downloadFileMasterMainAuth 9

.downloadFileMasterMainAuth

GITHUB_PAT-aware and main-master-aware download from
GitHub

Description

Equivalent to utils::download.file, but taking the GITHUB_PAT environment variable and using
it to access the Github url.

Usage

.downloadFileMasterMainAuth(
url,
destfile,
need = "HEAD",
verbose = getOption("Require.verbose"),
verboseLevel = 2

)

Arguments

url a character string (or longer vector for the "libcurl" method) naming the
URL of a resource to be downloaded.

destfile a character string (or vector, see the url argument) with the file path where the
downloaded file is to be saved. Tilde-expansion is performed.

need If specified, user can suggest which master or main or HEAD to try first. If
unspecified, HEAD is used.

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

verboseLevel A numeric indicating what verbose threshold (level) above which this message
will show.

Value

This is called for its side effect, namely, the same as utils::download.file, but using a GITHUB_PAT,
it if is in the environment, and trying both master and main if the actual url specifies either master
or main and it does not exist.

10 .installed.pkgs

.installed.pkgs Partial alternative (faster) to installed.packages

Description

This reads the DESCRIPTION files only, so can only access fields that are available in the DE-
SCRIPTION file. This is different than installed.packages which has many other fields, like
"Built", "NeedsCompilation" etc. If those fields are needed, then this function will return an empty
column in the returned character matrix.

Usage

.installed.pkgs(
lib.loc = .libPaths(),
which = c("Depends", "Imports", "LinkingTo"),
other = NULL,
purge = getOption("Require.purge", FALSE),
packages = NULL,
collapse = FALSE

)

Arguments

lib.loc character vector describing the location of R library trees to search through, or
NULL for all known trees (see .libPaths).

which a character vector listing the types of dependencies, a subset of c("Depends",
"Imports", "LinkingTo", "Suggests", "Enhances"). Character string "all"
is shorthand for that vector, character string "most" for the same vector without
"Enhances".

other Can supply other fields; the only benefit here is that a user can specify "github"
(lower case) and it will automatically add c("GithubRepo", "GithubUsername",
"GithubRef", "GithubSHA1", "GithubSubFolder") fields

purge Logical. Should all caches be purged? Default is getOption("Require.purge",
FALSE). There is a lot of internal caching of results throughout the Require
package. These help with speed and reduce calls to internet sources. However,
sometimes these caches must be purged. The cached values are renewed when
found to be too old, with the age limit. This maximum age can be set in seconds
with the environment variable R_AVAILABLE_PACKAGES_CACHE_CONTROL_MAX_AGE,
or if unset, defaults to 3600 (one hour – see utils::available.packages).
Internally, there are calls to available.packages.

packages Character vector. If NULL (default), then all installed packages are searched for.
If a character vector is supplied, then it will only return information about those
packages (and is thus faster to execute).

collapse Logical. If TRUE then the dependency fields will be collapsed; if FALSE (default)
then the which fields will be kept separate.

availablePackagesOverride 11

availablePackagesOverride

Create a custom "available.packages" object

Description

This is the mechanism by which install.packages determines which packages should be installed
from where. With this override, we can indicate arbitrary repos, Package, File for each individual
package.

Usage

availablePackagesOverride(
toInstall,
repos,
purge,
type = getOption("pkgType"),
verbose = getOption("Require.verbose")

)

Arguments

toInstall A pkgDT object

repos The remote repository (e.g., a CRAN mirror), passed to either install.packages,
install_github or installVersions.

purge Logical. Should all caches be purged? Default is getOption("Require.purge",
FALSE). There is a lot of internal caching of results throughout the Require
package. These help with speed and reduce calls to internet sources. However,
sometimes these caches must be purged. The cached values are renewed when
found to be too old, with the age limit. This maximum age can be set in seconds
with the environment variable R_AVAILABLE_PACKAGES_CACHE_CONTROL_MAX_AGE,
or if unset, defaults to 3600 (one hour – see utils::available.packages).

Internally, there are calls to available.packages.

type See utils::install.packages

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

12 cacheClearPackages

availableVersionOK Needs VersionOnRepos, versionSpec and inequality columns

Description

Needs VersionOnRepos, versionSpec and inequality columns

Usage

availableVersionOK(pkgDT)

Arguments

pkgDT A pkgDT object

cacheClearPackages Clear Require Cache elements

Description

Clear Require Cache elements

Usage

cacheClearPackages(
packages,
ask = interactive(),
Rversion = versionMajorMinor(),
clearCranCache = FALSE,
verbose = getOption("Require.verbose")

)

clearRequirePackageCache(
packages,
ask = interactive(),
Rversion = versionMajorMinor(),
clearCranCache = FALSE,
verbose = getOption("Require.verbose")

)

cacheDefaultDir 13

Arguments

packages Either missing or a character vector of package names (currently cannot specify
version number) to remove from the local Require Cache.

ask Logical. If TRUE, then it will ask user to confirm

Rversion An R version (major dot minor, e.g., "4.2"). Defaults to current R version.

clearCranCache Logical. If TRUE, then this will also clear the local crancache cache, which is
only relevant if options(Require.useCranCache = TRUE), i.e., if Require is
using the crancache cache also

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

cacheDefaultDir The default cache directory for Require Cache

Description

A wrapper around tools::R_user_dir("Require", which = "cache") that creates the directory,
if it does not exist.

Usage

cacheDefaultDir()

Value

The default cache directory

cacheDir Path to (package) cache directory

Description

Sets (if create = TRUE) or gets the cache directory associated with the Require package.

Usage

cacheDir(create, verbose = getOption("Require.verbose"))

cachePkgDir(create)

14 cacheGetOptionCachePkgDir

Arguments

create A logical indicating whether the path should be created if it does not exist. De-
fault is FALSE.

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

Details

To set a different directory than the default, set the system variable: R_USER_CACHE_DIR = "somePath"
and/or R_REQUIRE_PKG_CACHE = "somePath" e.g., in .Renviron file or Sys.setenv(). See Note
below.

Value

If !is.null(cacheGetOptionCachePkgDir()), i.e., a cache path exists, the cache directory will
be created, with a README placed in the folder. Otherwise, this function will just return the path
of what the cache directory would be.

Note

Currently, there are 2 different Cache directories used by Require: cacheDir and cachePkgDir.
The cachePkgDir is intended to be a sub-directory of the cacheDir. If you set Sys.setenv("R_USER_CACHE_DIR"
= "somedir"), then both the package cache and cache dirs will be set, with the package cache
a sub-directory. You can, however, set them independently, if you set "R_USER_CACHE_DIR" and
"R_REQUIRE_PKG_CACHE" environment variable. The package cache can also be set with options("Require.cachePkgDir"
= "somedir").

cacheGetOptionCachePkgDir

Get the option for Require.cachePkgDir

Description

First checks if an environment variable Require.cachePkgDir is set and defines a path. If not set,
checks whether the options("Require.cachePkgDir") is set. If a character string, then it returns
that. If TRUE, then use cachePkgDir(). If FALSE then returns NULL.

Usage

cacheGetOptionCachePkgDir()

cachePurge 15

cachePurge Purge everything in the Require cache

Description

Require uses caches for local Package saving, local caches of available.packages, local caches
of GitHub (e.g., "DESCRIPTION") files, and some function calls that are cached. This function clears
all of them.

Usage

cachePurge(packages = FALSE, repos = getOption("repos"))

purgeCache(packages = FALSE, repos = getOption("repos"))

Arguments

packages Either a character vector of packages to install via install.packages, then load
(i.e., with library), or, for convenience, a vector or list (using c or list) of un-
quoted package names to install and/or load (as in require, but vectorized).
Passing vectors of names may not work in all cases, so user should confirm
before relying on this behaviour in operational code. In the case of a GitHub
package, it will be assumed that the name of the repository is the name of the
package. If this is not the case, then pass a named character vector here, where
the names are the package names that could be different than the GitHub repos-
itory name.

repos The remote repository (e.g., a CRAN mirror), passed to either install.packages,
install_github or installVersions.

Value

Run for its side effect, namely, all cached objects are removed.

checkLibPaths Creates the directories, and adds version number

Description

Creates the directories, and adds version number

Usage

checkLibPaths(libPaths, ifMissing, exact = FALSE, ...)

16 checkPath

Arguments

libPaths The library path (or libraries) where all packages should be installed, and looked
for to load (i.e., call library). This can be used to create isolated, stand alone
package installations, if used with standAlone = TRUE. Currently, the path sup-
plied here will be prepended to .libPaths() (temporarily during this call)
to Require if standAlone = FALSE or will set (temporarily) .libPaths() to
c(libPaths, tail(libPaths(), 1) to keep base packages.

ifMissing An alternative path if libPaths argument is missing.

exact Logical. If FALSE, the default, then checkLibPaths will append the R version
number on the libPaths supplied. If TRUE, checkLibPaths will return exactly
the libPaths supplied.

... Not used, but allows other functions to pass through arguments.

checkPath Check directory path

Description

Checks the specified path to a directory for formatting consistencies, such as trailing slashes, etc.

Usage

checkPath(path, create)

S4 method for signature 'character,logical'
checkPath(path, create)

S4 method for signature 'character,missing'
checkPath(path)

S4 method for signature 'NULL,ANY'
checkPath(path)

S4 method for signature 'missing,ANY'
checkPath()

Arguments

path A character string corresponding to a directory path.

create A logical indicating whether the path should be created if it does not exist. De-
fault is FALSE.

Value

Character string denoting the cleaned up filepath.

compareVersion2 17

Note

This will not work for paths to files. To check for existence of files, use file.exists(). To
normalize a path to a file, use normPath() or normalizePath().

See Also

file.exists(), dir.create().

Examples

normalize file paths
paths <- list("./aaa/zzz",

"./aaa/zzz/",
".//aaa//zzz",
".//aaa//zzz/",
".\\\\aaa\\\\zzz",
".\\\\aaa\\\\zzz\\\\",
file.path(".", "aaa", "zzz"))

checked <- normPath(paths)
length(unique(checked)) ## 1; all of the above are equivalent

check to see if a path exists
tmpdir <- file.path(tempdir(), "example_checkPath")

dir.exists(tmpdir) ## FALSE
tryCatch(checkPath(tmpdir, create = FALSE), error = function(e) FALSE) ## FALSE

checkPath(tmpdir, create = TRUE)
dir.exists(tmpdir) ## TRUE

unlink(tmpdir, recursive = TRUE) # clean up

compareVersion2 Compare package versions

Description

Alternative to utils::compareVersion that is vectorized on version, versionSpec and/or inequality.
This will also return an NA element in the returned vector if one of the arguments has NA for that
element.

Usage

compareVersion2(version, versionSpec, inequality)

18 dealWithMissingLibPaths

Arguments

version One or more package versions. Can be character or numeric_version.

versionSpec One or more versions to compare to. Can be character or numeric_version.

inequality The inequality to use, i.e., >=.

Value

a logical vector of the length of the longest of the 3 arguments.

dealWithMissingLibPaths

Only checks for deprecated libPath argument (singular)

Description

Only checks for deprecated libPath argument (singular)

Usage

dealWithMissingLibPaths(
libPaths,
standAlone = getOption("Require.standAlone", FALSE),
...

)

Arguments

libPaths The library path (or libraries) where all packages should be installed, and looked
for to load (i.e., call library). This can be used to create isolated, stand alone
package installations, if used with standAlone = TRUE. Currently, the path sup-
plied here will be prepended to .libPaths() (temporarily during this call)
to Require if standAlone = FALSE or will set (temporarily) .libPaths() to
c(libPaths, tail(libPaths(), 1) to keep base packages.

standAlone Logical. If TRUE, all packages will be installed to and loaded from the libPaths
only. NOTE: If TRUE, THIS WILL CHANGE THE USER’S .libPaths(), sim-
ilar to e.g., the checkpoint package. If FALSE, then libPath will be prepended
to .libPaths() during the Require call, resulting in shared packages, i.e., it
will include the user’s default package folder(s). This can be create dramatically
faster installs if the user has a substantial number of the packages already in
their personal library. Default FALSE to minimize package installing.

... Checks for the incorrect argument libPath (no s)

DESCRIPTIONFileVersionV 19

DESCRIPTIONFileVersionV

GitHub package tools

Description

A series of helpers to access and deal with GitHub packages

Usage

DESCRIPTIONFileVersionV(file, purge = getOption("Require.purge", FALSE))

DESCRIPTIONFileOtherV(file, other = "RemoteSha")

dlGitHubDESCRIPTION(
pkg,
purge = getOption("Require.purge", FALSE),
verbose = getOption("Require.verbose")

)

Arguments

file A file path to a DESCRIPTION file

purge Logical. Should all caches be purged? Default is getOption("Require.purge",
FALSE). There is a lot of internal caching of results throughout the Require
package. These help with speed and reduce calls to internet sources. However,
sometimes these caches must be purged. The cached values are renewed when
found to be too old, with the age limit. This maximum age can be set in seconds
with the environment variable R_AVAILABLE_PACKAGES_CACHE_CONTROL_MAX_AGE,
or if unset, defaults to 3600 (one hour – see utils::available.packages).
Internally, there are calls to available.packages.

other Any other keyword in a DESCRIPTION file that precedes a ":". The rest of the
line will be retrieved.

pkg A character string with a GitHub package specification (c.f. remotes)

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

Details

dlGitHubDESCRIPTION retrieves the DESCRIPTION file from GitHub.com

20 detachAll

detachAll Detach and unload all packages

Description

This uses pkgDepTopoSort internally so that the package dependency tree is determined, and then
packages are unloaded in the reverse order. Some packages don’t unload successfully for a variety of
reasons. Several known packages that have this problem are identified internally and not unloaded.
Currently, these are glue, rlang, ps, ellipsis, and, processx.

Usage

detachAll(
pkgs,
dontTry = NULL,
doSort = TRUE,
verbose = getOption("Require.verbose")

)

Arguments

pkgs A character vector of packages to detach. Will be topologically sorted unless
doSort is FALSE.

dontTry A character vector of packages to not try. This can be used by a user if they find
a package fails in attempts to unload it, e.g., "ps"

doSort If TRUE (the default), then the pkgs will be topologically sorted. If FALSE, then
it won’t. Useful if the pkgs are already sorted.

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

Value

A numeric named vector, with names of the packages that were attempted. 2 means the package
was successfully unloaded, 1 it was tried, but failed, 3 it was not loaded, so was not unloaded.

dlArchiveVersionsAvailable 21

dlArchiveVersionsAvailable

Available and archived versions

Description

These are wrappers around available.packages and also get the archived versions available on
CRAN.

Usage

dlArchiveVersionsAvailable(
package,
repos = getOption("repos"),
verbose = getOption("Require.verbose")

)

available.packagesCached(
repos,
purge,
verbose = getOption("Require.verbose"),
returnDataTable = TRUE,
type

)

Arguments

package A single package name (without version or github specifications)
repos The remote repository (e.g., a CRAN mirror), passed to either install.packages,

install_github or installVersions.
verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,

then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

purge Logical. Should all caches be purged? Default is getOption("Require.purge",
FALSE). There is a lot of internal caching of results throughout the Require
package. These help with speed and reduce calls to internet sources. However,
sometimes these caches must be purged. The cached values are renewed when
found to be too old, with the age limit. This maximum age can be set in seconds
with the environment variable R_AVAILABLE_PACKAGES_CACHE_CONTROL_MAX_AGE,
or if unset, defaults to 3600 (one hour – see utils::available.packages).
Internally, there are calls to available.packages.

returnDataTable

Logical. If TRUE, the default, then the return is a data.table. Otherwise, it is a
matrix, as per available.packages

type See utils::install.packages

22 envPkgCreate

Details

dlArchiveVersionsAvailable searches CRAN Archives for available versions. It has been bor-
rowed from a sub-set of the code in a non-exported function: remotes:::download_version_url

doLibPaths Deals with missing libPaths arg, and takes first

Description

Deals with missing libPaths arg, and takes first

Usage

doLibPaths(libPaths, standAlone = FALSE)

Arguments

libPaths The library path (or libraries) where all packages should be installed, and looked
for to load (i.e., call library). This can be used to create isolated, stand alone
package installations, if used with standAlone = TRUE. Currently, the path sup-
plied here will be prepended to .libPaths() (temporarily during this call)
to Require if standAlone = FALSE or will set (temporarily) .libPaths() to
c(libPaths, tail(libPaths(), 1) to keep base packages.

standAlone Logical. If TRUE, all packages will be installed to and loaded from the libPaths
only. NOTE: If TRUE, THIS WILL CHANGE THE USER’S .libPaths(), sim-
ilar to e.g., the checkpoint package. If FALSE, then libPath will be prepended
to .libPaths() during the Require call, resulting in shared packages, i.e., it
will include the user’s default package folder(s). This can be create dramatically
faster installs if the user has a substantial number of the packages already in
their personal library. Default FALSE to minimize package installing.

envPkgCreate 1st level –> create the .pkgEnv object in Require

Description

1st level –> create the .pkgEnv object in Require

Usage

envPkgCreate(parentEnv = asNamespace("Require"))

Arguments

parentEnv The parent environment in which to make the new environment. Defaults to
asNamespace("Require")

envPkgDepDepsCreate 23

envPkgDepDepsCreate 3rd level for deps ###

Description

3rd level for deps ###

Usage

envPkgDepDepsCreate()

envPkgDepDESCFileCreate

3rd level for DESCRIPTIONFile

Description

3rd level for DESCRIPTIONFile

Usage

envPkgDepDESCFileCreate()

extractPkgName Extract info from package character strings

Description

Cleans a character vector of non-package name related information (e.g., version)

Usage

extractPkgName(pkgs, filenames)

extractVersionNumber(pkgs, filenames)

extractInequality(pkgs)

extractPkgGitHub(pkgs)

Arguments

pkgs A character string vector of packages with or without GitHub path or versions

filenames Can be supplied instead of pkgs if it is a filename e.g., a .tar.gz or .zip that was
downloaded from CRAN.

24 getDeps

Value

Just the package names without extraneous info.

See Also

trimVersionNumber()

Examples

extractPkgName("Require (>=0.0.1)")
extractVersionNumber(c(

"Require (<=0.0.1)",
"PredictiveEcology/Require@development (<=0.0.4)"

))
extractInequality("Require (<=0.0.1)")
extractPkgGitHub("PredictiveEcology/Require")

getDeps The packages argument may have up to 4 pieces of information for
GitHub packages: name, repository, branch, version. For CRAN-
alikes, it will only be 2 pieces: name, version. There can also be
an inequality or equality, if there is a version.

Description

The packages argument may have up to 4 pieces of information for GitHub packages: name,
repository, branch, version. For CRAN-alikes, it will only be 2 pieces: name, version. There can
also be an inequality or equality, if there is a version.

Usage

getDeps(pkgDT, which, recursive, type = type, repos, libPaths, verbose)

Arguments

pkgDT A pkgDT object e.g., from toPkgDT

which a character vector listing the types of dependencies, a subset of c("Depends",
"Imports", "LinkingTo", "Suggests", "Enhances"). Character string "all"
is shorthand for that vector, character string "most" for the same vector without
"Enhances".

recursive Logical. Should dependencies of dependencies be searched, recursively. NOTE:
Dependencies of suggests will not be recursive. Default TRUE.

type See utils::install.packages

repos is used for ap.

libPaths A path to search for installed packages. Defaults to .libPaths()

invertList 25

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

Details

If version is not supplied, it will take the local, installed version, if it exists. Otherwise, it is assumed
that the HEAD is desired. The function will find it in the ap or on github.com. For github packages,
this is obviously a slow step, which can be accelerated if user supplies a sha or a version e.g.,
getDeps("PredictiveEcology/LandR@development (==1.0.2)")

Value

A (named) vector of SaveNames, which is a concatenation of the 2 or 4 elements above, plus the
which and the recursive.

invertList Invert a 2-level list

Description

This is a simple version of purrr::transpose, only for lists with 2 levels.

Usage

invertList(l)

Arguments

l A list with 2 levels. If some levels are absent, they will be NULL

Value

A list with 2 levels deep, inverted from l

Examples

create a 2-deep, 2 levels in first, 3 levels in second
a <- list(a = list(d = 1, e = 2:3, f = 4:6), b = list(d = 5, e = 55))
invertList(a) # creates 2-deep, now 3 levels outer --> 2 levels inner

26 linkOrCopy

joinToAvailablePackages

Join a data.table with a Package column to available.packages

Description

Will join available.packages() with pkgDT, if pkgDT does not already have a column named
Depends, which would be an indicator that this had already happened.

Usage

joinToAvailablePackages(pkgDT, repos, type, which, verbose)

Arguments

pkgDT A pkgDT object e.g., from toPkgDT

repos is used for ap.

type See utils::install.packages

which a character vector listing the types of dependencies, a subset of c("Depends",
"Imports", "LinkingTo", "Suggests", "Enhances"). Character string "all"
is shorthand for that vector, character string "most" for the same vector without
"Enhances".

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

Value

The returned data.table will have most of the columns from available.packages appended to
the pkgDT, including Depends, Imports, Suggests. It will change the column name that is normally
returned from available.packages as Version to VersionOnRepos.

linkOrCopy Create link to file, falling back to making a copy if linking fails.

Description

First try to create a hardlink to the file. If that fails, try a symbolic link (symlink) before falling back
to copying the file. "File" here can mean a file or a directory.

masterMainToHead 27

Usage

linkOrCopy(from, to, allowSymlink = FALSE)

fileRenameOrMove(from, to)

Arguments

from, to character vectors, containing file names or paths.

allowSymlink Logical. If FALSE, the default, then it will try file.link first, then file.copy,
omitting the file.symlink step

masterMainToHead This converts master or main to HEAD for a git repo

Description

This will also convert a git repo with nothing after the @ to @HEAD

Usage

masterMainToHead(gitRepo)

Arguments

gitRepo A git repository of the form account/repo with optional @branch or @sha or
@tag

Value

The git repository with @HEAD if it had @master, @main or no @.

messageDF Use message to print a clean square data structure

Description

Sends to message, but in a structured way so that a data.frame-like can be cleanly sent to messaging.

This will only show a message if the value of verbose is greater than the verboseLevel. This
is mostly useful for developers of code who want to give users of their code easy access to how
verbose their code will be. A developer of a function will place this messageVerbose internally,
setting the verboseLevel according to how advanced they may want the message to be. 1 is a
reasonable default for standard use, 0 would be for "a very important message for all users", 2 or
above would be increasing levels of details for e.g., advanced use. If a user sets to -1 with this
numeric approach, they can avoid all messaging.

28 messageDF

Usage

messageDF(df, round, verbose = getOption("Require.verbose"), verboseLevel = 1)

messageVerbose(..., verbose = getOption("Require.verbose"), verboseLevel = 1)

messageVerboseCounter(
pre = "",
post = "",
verbose = getOption("Require.verbose"),
verboseLevel = 1,
counter = 1,
total = 1,
minCounter = 1

)

Arguments

df A data.frame, data.table, matrix

round An optional numeric to pass to round

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

verboseLevel A numeric indicating what verbose threshold (level) above which this message
will show.

... Passed to install.packages. Good candidates are e.g., type or dependencies.
This can be used with install_githubArgs or install.packageArgs which
give individual options for those 2 internal function calls.

pre A single text string to paste before the counter

post A single text string to paste after the counter

counter An integer indicating which iteration is being done

total An integer indicating the total number to be done.

minCounter An integer indicating the minimum (i.e,. starting value)

Value

Used for side effects, namely messaging that can be turned on or off with different numeric values
of verboseLevel. A user sets the verboseLevel for a particular message.

modifyList2 29

modifyList2 modifyList for multiple lists

Description

This calls utils::modifyList iteratively using base::Reduce, so it can handle >2 lists. The
subsequent list elements that share a name will override previous list elements with that same name.
It also will handle the case where any list is a NULL. Note: default keep.null = TRUE, which is
different than modifyList

Usage

modifyList2(..., keep.null = FALSE)

modifyList3(..., keep.null = TRUE)

Arguments

... One or more named lists.

keep.null If TRUE, NULL elements in val become NULL elements in x. Otherwise, the cor-
responding element, if present, is deleted from x.

Details

More or less a convenience around Reduce(modifyList, list(...)), with some checks, and the
addition of keep.null = TRUE by default.

Note

modifyList3 retains the original behaviour of modifyList2 (prior to Oct 2022); however, it cannot
retain NULL values in lists.

Examples

modifyList2(list(a = 1), list(a = 2, b = 2))
modifyList2(list(a = 1), NULL, list(a = 2, b = 2))
modifyList2(

list(a = 1), list(x = NULL), list(a = 2, b = 2),
list(a = 3, c = list(1:10))

)

30 normPath

normPath Normalize filepath

Description

Checks the specified filepath for formatting consistencies:

1. use slash instead of backslash;

2. do tilde etc. expansion;

3. remove trailing slash.

Usage

normPath(path)

S4 method for signature 'character'
normPath(path)

S4 method for signature 'list'
normPath(path)

S4 method for signature 'NULL'
normPath(path)

S4 method for signature 'missing'
normPath()

S4 method for signature 'logical'
normPath(path)

Arguments

path A character vector of filepaths.

Value

Character vector of cleaned up filepaths.

Examples

normalize file paths
paths <- list("./aaa/zzz",

"./aaa/zzz/",
".//aaa//zzz",
".//aaa//zzz/",
".\\\\aaa\\\\zzz",
".\\\\aaa\\\\zzz\\\\",
file.path(".", "aaa", "zzz"))

paddedFloatToChar 31

checked <- normPath(paths)
length(unique(checked)) ## 1; all of the above are equivalent

check to see if a path exists
tmpdir <- file.path(tempdir(), "example_checkPath")

dir.exists(tmpdir) ## FALSE
tryCatch(checkPath(tmpdir, create = FALSE), error = function(e) FALSE) ## FALSE

checkPath(tmpdir, create = TRUE)
dir.exists(tmpdir) ## TRUE

unlink(tmpdir, recursive = TRUE) # clean up

paddedFloatToChar Convert numeric to character with padding

Description

This will pad floating point numbers, right or left. For integers, either class integer or functionally
integer (e.g., 1.0), it will not pad right of the decimal. For more specific control or to get exact
padding right and left of decimal, try the stringi package. It will also not do any rounding. See
examples.

Usage

paddedFloatToChar(x, padL = ceiling(log10(x + 1)), padR = 3, pad = "0")

Arguments

x numeric. Number to be converted to character with padding

padL numeric. Desired number of digits on left side of decimal. If not enough, pad
will be used to pad.

padR numeric. Desired number of digits on right side of decimal. If not enough, pad
will be used to pad.

pad character to use as padding (nchar(pad) == 1 must be TRUE). Currently, can be
only "0" or " " (i.e., space).

Value

Character string representing the filename.

Author(s)

Eliot McIntire and Alex Chubaty

32 parseGitHub

Examples

paddedFloatToChar(1.25)
paddedFloatToChar(1.25, padL = 3, padR = 5)
paddedFloatToChar(1.25, padL = 3, padR = 1) # no rounding, so keeps 2 right of decimal

pakEnv 2nd level

Description

2nd level

Usage

pakEnv()

parseGitHub Parse a github package specification

Description

This converts a specification like PredictiveEcology/Require@development into separate columns,
"Account", "Repo", "Branch", "GitSubFolder" (if there is one)

Usage

parseGitHub(pkgDT, verbose = getOption("Require.verbose"))

Arguments

pkgDT A pkgDT data.table.

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

Details

parseGitHub turns the single character string representation into 3 or 4: Account, Repo, Branch,
SubFolder.

Value

parseGitHub returns a data.table with added columns.

pkgDepEnv 33

pkgDepEnv 2nd level

Description

2nd level

Usage

pkgDepEnv()

pkgDepIfDepRemoved Package dependencies when one or more packages removed

Description

This is primarily for package developers. It allows the testing of what the recursive dependencies
would be if a package was removed from the immediate dependencies.

Usage

pkgDepIfDepRemoved(
pkg = character(),
depsRemoved = character(),
verbose = getOption()

)

Arguments

pkg A package name to be testing the dependencies

depsRemoved A vector of package names who are to be "removed" from the pkg immediate
dependencies

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

Value

A list with 3 named lists Direct, Recursive and IfRemoved. Direct will show the top level direct
dependencies, either Remaining or Removed. Recursive will show the full recursive dependencies,
either Remaining or Removed. IfRemoved returns all package dependencies that are removed for
each top level dependency. If a top level dependency is not listed in this final list, then it means that
it is also a recursive dependency elsewhere, so its removal has no effect.

34 pkgDepTopoSort

Examples

Not run:
if (Require:::.runLongExamples()) {

opts <- Require:::.setupExample()

pkgDepIfDepRemoved("reproducible", "data.table")

Require:::.cleanup(opts)
}

End(Not run)

pkgDepTopoSort Reverse package depends

Description

This is a wrapper around tools::dependsOnPkgs, but with the added option of topoSort, which
will sort them such that the packages at the top will have the least number of dependencies that
are in pkgs. This is essentially a topological sort, but it is done heuristically. This can be used to
e.g., detach or unloadNamespace packages in order so that they each of their dependencies are
detached or unloaded first.

pkgDep2 is a convenience wrapper of pkgDep that "goes one level in", i.e., the first order dependen-
cies, and runs the pkgDep on those.

This will first look in local filesystem (in .libPaths()) and will use a local package to find its
dependencies. If the package does not exist locally, including whether it is the correct version,
then it will look in (currently) CRAN and its archives (if the current CRAN version is not the desired
version to check). It will also look on GitHub if the package description is of the form of a GitHub
package with format account/repo@branch or account/repo@commit. For this, it will attempt
to get package dependencies from the GitHub ‘DESCRIPTION’ file. This is intended to replace
tools::package_dependencies or pkgDep in the miniCRAN package, but with modifications to
allow multiple sources to be searched in the same function call.

Usage

pkgDepTopoSort(
pkgs,
deps,
reverse = FALSE,
topoSort = TRUE,
libPaths,
useAllInSearch = FALSE,
returnFull = TRUE,
recursive = TRUE,
purge = getOption("Require.purge", FALSE),
which = c("Depends", "Imports", "LinkingTo"),

pkgDepTopoSort 35

type = getOption("pkgType"),
verbose = getOption("Require.verbose"),
...

)

pkgDep2(...)

pkgDep(
packages,
libPaths,
which = c("Depends", "Imports", "LinkingTo"),
recursive = TRUE,
depends,
imports,
suggests,
linkingTo,
repos = getOption("repos"),
keepVersionNumber = TRUE,
includeBase = FALSE,
includeSelf = TRUE,
sort = TRUE,
simplify = TRUE,
purge = getOption("Require.purge", FALSE),
verbose = getOption("Require.verbose"),
type = getOption("pkgType"),
Additional_repositories = FALSE,
...

)

Arguments

pkgs A vector of package names to evaluate their reverse depends (i.e., the packages
that use each of these packages)

deps An optional named list of (reverse) dependencies. If not supplied, then tools::dependsOnPkgs(...,
recursive = TRUE) will be used

reverse Logical. If TRUE, then this will use tools::pkgDependsOn to determine which
packages depend on the pkgs

topoSort Logical. If TRUE, the default, then the returned list of packages will be in order
with the least number of dependencies listed in pkgs at the top of the list.

libPaths A path to search for installed packages. Defaults to .libPaths()

useAllInSearch Logical. If TRUE, then all non-core R packages in search() will be appended to
pkgs to allow those to also be identified

returnFull Logical. Primarily useful when reverse = TRUE. If TRUE, then then all installed
packages will be searched. If FALSE, the default, only packages that are currently
in the search() path and passed in pkgs will be included in the possible reverse
dependencies.

36 pkgDepTopoSort

recursive Logical. Should dependencies of dependencies be searched, recursively. NOTE:
Dependencies of suggests will not be recursive. Default TRUE.

purge Logical. Should all caches be purged? Default is getOption("Require.purge",
FALSE). There is a lot of internal caching of results throughout the Require
package. These help with speed and reduce calls to internet sources. However,
sometimes these caches must be purged. The cached values are renewed when
found to be too old, with the age limit. This maximum age can be set in seconds
with the environment variable R_AVAILABLE_PACKAGES_CACHE_CONTROL_MAX_AGE,
or if unset, defaults to 3600 (one hour – see utils::available.packages).
Internally, there are calls to available.packages.

which a character vector listing the types of dependencies, a subset of c("Depends",
"Imports", "LinkingTo", "Suggests", "Enhances"). Character string "all"
is shorthand for that vector, character string "most" for the same vector without
"Enhances".

type See utils::install.packages

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

... Currently only dependencies as an alternative to which. If specified, then
which will be ignored.

packages Either a character vector of packages to install via install.packages, then load
(i.e., with library), or, for convenience, a vector or list (using c or list) of un-
quoted package names to install and/or load (as in require, but vectorized).
Passing vectors of names may not work in all cases, so user should confirm
before relying on this behaviour in operational code. In the case of a GitHub
package, it will be assumed that the name of the repository is the name of the
package. If this is not the case, then pass a named character vector here, where
the names are the package names that could be different than the GitHub repos-
itory name.

depends Logical. Include packages listed in "Depends". Default TRUE.

imports Logical. Include packages listed in "Imports". Default TRUE.

suggests Logical. Include packages listed in "Suggests". Default FALSE.

linkingTo Logical. Include packages listed in "LinkingTo". Default TRUE.

repos The remote repository (e.g., a CRAN mirror), passed to either install.packages,
install_github or installVersions.

keepVersionNumber

Logical. If TRUE, then the package dependencies returned will include version
number. Default is FALSE

includeBase Logical. Should R base packages be included, specifically, those in tail(.libPaths(),
1)

includeSelf Logical. If TRUE, the default, then the dependencies will include the package
itself in the returned list elements, otherwise, only the "dependencies"

pkgDepTopoSort 37

sort Logical. If TRUE, the default, then the packages will be sorted alphabetically. If
FALSE, the packages will not have a discernible order as they will be a concate-
nation of the possibly recursive package dependencies.

simplify Logical or numeric. If TRUE (or > 0), the default, the return object is "just" a char-
acter vector of package names (with version requirements). If FALSE (or 0), then
a data.table will be returned with 4 columns, Package, packageFullName,
parentPackage (the package name for which the given line entry is a depen-
dency; will be "user" if it was user supplied) and deps, which is a list of data.tables
of all dependencies. If a negative number, then it will return a similar data.table
as with FALSE, however, duplications in the recursive package dependencies are
left intact.

Additional_repositories

Logical. If TRUE, then pkgDep will return a list of data.table objects (in-
stead of character vectors) with a column packageFullName and possibly a sec-
ond column Additional_repositories, which may have been specified in a
DESCRIPTION file. NOTE: THIS ALTERS THE OUTPUT CLASS

Value

A possibly ordered, named (with packages as names) list where list elements are either full reverse
depends.

Note

tools::package_dependencies and pkgDep will differ under the following circumstances:

1. GitHub packages are not detected using tools::package_dependencies;

2. tools::package_dependencies does not detect the dependencies of base packages among
themselves, e.g., methods depends on stats and graphics.

Examples

Not run:
if (Require:::.runLongExamples()) {

opts <- Require:::.setupExample()

pkgDepTopoSort(c("Require", "data.table"), reverse = TRUE)

Require:::.cleanup(opts)
}

End(Not run)

Not run:
if (Require:::.runLongExamples()) {

opts <- Require:::.setupExample()

pkgDep2("reproducible")
much bigger one
pkgDep2("tidyverse")

38 pkgSnapshot

Require:::.cleanup(opts)
}

End(Not run)
Not run:
if (Require:::.runLongExamples()) {

opts <- Require:::.setupExample()

pkgDep("tidyverse", recursive = TRUE)

GitHub, local, and CRAN packages
pkgDep(c("PredictiveEcology/reproducible", "Require", "plyr"))

Require:::.cleanup(opts)
}

End(Not run)

pkgSnapshot Take a snapshot of all the packages and version numbers

Description

This can be used later by Require to install or re-install the correct versions. See examples.

Usage

pkgSnapshot(
packageVersionFile = getOption("Require.packageVersionFile"),
libPaths = .libPaths(),
standAlone = FALSE,
purge = getOption("Require.purge", FALSE),
exact = TRUE,
includeBase = FALSE,
verbose = getOption("Require.verbose")

)

pkgSnapshot2(
packageVersionFile = getOption("Require.packageVersionFile"),
libPaths,
standAlone = FALSE,
purge = getOption("Require.purge", FALSE),
exact = TRUE,
includeBase = FALSE,
verbose = getOption("Require.verbose")

)

pkgSnapshot 39

Arguments

packageVersionFile

A filename to save the packages and their currently installed version numbers.
Defaults to "packageVersions.txt". If this is specified to be NULL, the func-
tion will return the exact Require call needed to install all the packages at their
current versions. This can be useful to add to a script to allow for reproducibility
of a script.

libPaths The path to the local library where packages are installed. Defaults to the
.libPaths()[1].

standAlone Logical. If TRUE, all packages will be installed to and loaded from the libPaths
only. NOTE: If TRUE, THIS WILL CHANGE THE USER’S .libPaths(), sim-
ilar to e.g., the checkpoint package. If FALSE, then libPath will be prepended
to .libPaths() during the Require call, resulting in shared packages, i.e., it
will include the user’s default package folder(s). This can be create dramatically
faster installs if the user has a substantial number of the packages already in
their personal library. Default FALSE to minimize package installing.

purge Logical. Should all caches be purged? Default is getOption("Require.purge",
FALSE). There is a lot of internal caching of results throughout the Require
package. These help with speed and reduce calls to internet sources. However,
sometimes these caches must be purged. The cached values are renewed when
found to be too old, with the age limit. This maximum age can be set in seconds
with the environment variable R_AVAILABLE_PACKAGES_CACHE_CONTROL_MAX_AGE,
or if unset, defaults to 3600 (one hour – see utils::available.packages).
Internally, there are calls to available.packages.

exact Logical. If TRUE, the default, then for GitHub packages, it will install the exact
SHA, rather than the head of the account/repo@branch. For CRAN packages,
it will install the exact version. If FALSE, then GitHub packages will identify
their branch if that had been specified upon installation, not a SHA. If the pack-
age had been installed with reference to a SHA, then it will return the SHA as it
does not know what branch it came from. Similarly, CRAN packages will report
their version and specify with a >=, allowing a subsequent user to install with a
minimum version number, as opposed to an exact version number.

includeBase Logical. Should R base packages be included, specifically, those in tail(.libPaths(),
1)

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

Details

A file is written with the package names and versions of all packages within libPaths. This can
later be passed to Require.

pkgSnapshot2 returns a vector of package names and versions, with no file output. See examples.

40 RequireOptions

Value

Will both write a file, and (invisibly) return a vector of packages with the version numbers. This
vector can be used directly in Require, though it should likely be used with require = FALSE to
prevent attaching all the packages.

Examples

Not run:
if (Require:::.runLongExamples()) {

opts <- Require:::.setupExample()

install one archived version so that below does something interesting
libForThisEx <- tempdir2("Example")
Require("crayon (==1.5.1)", libPaths = libForThisEx, require = FALSE)
Normal use -- using the libForThisEx for example;
normally libPaths would be omitted to get all
packages in user or project library
tf <- tempfile()

writes to getOption("Require.packageVersionFile")
within project; also returns a vector
of packages with version
pkgs <- pkgSnapshot(
packageVersionFile = tf,
libPaths = libForThisEx, standAlone = TRUE # only this library

)

Now move this file to another computer e.g. by committing in git,
emailing, googledrive
on next computer/project
Require(packageVersionFile = tf, libPaths = libForThisEx)

Using pkgSnapshot2 to get the vector of packages and versions
pkgs <- pkgSnapshot2(

libPaths = libForThisEx, standAlone = TRUE
)
Install(pkgs) # will install packages from previous line

Require:::.cleanup(opts)
unlink(getOption("Require.packageVersionFile"))

}

End(Not run)

RequireOptions Require options

RequireOptions 41

Description

These provide top-level, powerful settings for a comprehensive reproducible workflow. See Details
below.

Usage

RequireOptions()

getRequireOptions()

Details

RequireOptions() prints the default values of package options set at startup, which may have
been changed (e.g., by the user) during the current session.

getRequireOptions() prints the current values of package options.

Below are options that can be set with options("Require.xxx" = newValue), where xxx is one
of the values below, and newValue is a new value to give the option. Sometimes these options can
be placed in the user’s .Rprofile file so they persist between sessions.

The following options are likely of interest to most users:

install Default: TRUE. This is the default argument to Require, but does not affect Install. If
this is FALSE, then no installations will be attempted, and missing packages will result in an
error.

RPackageCache Default: cacheGetOptionCachePkgDir(), which must be either a path or a logi-
cal. To turn off package caching, set this to FALSE. This can be set using an environment vari-
able e.g. Sys.setenv(R_REQUIRE_PKG_CACHE = "somePath"), or Sys.setenv(R_REQUIRE_PKG_CACHE
= "TRUE"); if that is not set, then an either a path or logical option (options(Require.cachePkgDir
= "somePath") or options(Require.cachePkgDir = TRUE)). If TRUE, the default folder lo-
cation cachePkgDir() will be used. If this is TRUE or a path is provided, then binary and
source packages will be cached here. Subsequent downloads of same package will use local
copy. Default is to have packages not be cached locally so each install of the same version
will be from the original source, e.g., CRAN, GitHub.

otherPkgs Default: A character vector of packages that are generally more successful if installed
from Source on Unix-alikes. Since there are repositories that offer binary packages builds
for Linux (e.g., RStudio Package Manager), the vector of package names indicated here will
default to a standard CRAN repository, forcing a source install. See also spatialPkgs option,
which does the same for spatial packages.

purge Default: FALSE. If set to (almost) all internal caches used by Require will be deleted and
rebuilt. This should not generally be necessary as it will automatically be deleted after (by de-
fault) 1 hour (set via R_AVAILABLE_PACKAGES_CACHE_CONTROL_MAX_AGE environment vari-
able in seconds)

spatialPkgs Default: A character vector of packages that are generally more successful if in-
stalled from Source on Unix-alikes. Since there are repositories that offer binary packages
builds for Linux (e.g., RStudio Package Manager), the vector of package names indicated
here will default to a standard CRAN repository, forcing a source install. See also otherPkgs
option, which does the same for non-spatial packages.

42 rversions

useCranCache Default: FALSE. A user can optionally use the locally cached packages that are
available due to a user’s use of the crancache package.

verbose Default: 1. See ?Require.

rmBase Recursive function to remove .basePkgs

Description

Recursive function to remove .basePkgs

Usage

rmBase(includeBase = formals(pkgDep)[["includeBase"]], deps)

Arguments

includeBase Logical. If FALSE, the default, then base packages will be removed.

deps Either a list of dependencies, a data.table of dependencies with a column Package
or a vector of dependencies.

rversions R versions

Description

Reference table of R versions and their release dates (2018 and later).

Usage

rversions

Format

An object of class data.frame with 21 rows and 2 columns.

Details

Update this as needed using rversions::r_versions():

install.packages("rversions")
v = rversions::r_versions()
keep = which(as.Date(v$date, format = "

as.Date("2018-01-01", format = "
dput(v[keep, c("version", "date")])

setdiffNamed 43

setdiffNamed Like setdiff, but takes into account names

Description

This will identify the elements in l1 that are not in l2. If missingFill is provided, then elements
that are in l2, but not in l1 will be returned, assigning missingFill to their values. This might be
NULL or "", i.e., some sort of empty value. This function will work on named lists, named vectors
and likely on other named classes.

Usage

setdiffNamed(l1, l2, missingFill)

Arguments

l1 A named list or named vector

l2 A named list or named vector (must be same class as l1)

missingFill A value, such as NULL or "" or "missing" that will be given to the elements
returned, that are in l2, but not in l1

Details

There are 3 types of differences that might occur with named elements: 1. a new named element,
2. an removed named element, and 3. a modified named element. This function captures all of
these. In the case of unnamed elements, e.g., setdiff, the first two are not seen as differences, if
the values are not different.

Value

A vector or list of the elements in l1 that are not in l2, and optionally the elements of l2 that are
not in l1, with values set to missingFill

setLibPaths Set .libPaths

Description

This will set the .libPaths() by either adding a new path to it if standAlone = FALSE, or will
concatenate c(libPath, tail(.libPaths(), 1)) if standAlone = TRUE. Currently, the default is
to make this new .libPaths() "sticky", meaning it becomes associated with the current directory
even through a restart of R. It does this by adding and/updating the ‘.Rprofile’ file in the current
directory. If this current directory is a project, then the project will have the new .libPaths()
associated with it, even through an R restart.

44 setLibPaths

Usage

setLibPaths(
libPaths,
standAlone = TRUE,
updateRprofile = getOption("Require.updateRprofile", FALSE),
exact = FALSE,
verbose = getOption("Require.verbose")

)

Arguments

libPaths A new path to append to, or replace all existing user components of .libPath()

standAlone Logical. If TRUE, all packages will be installed to and loaded from the libPaths
only. NOTE: If TRUE, THIS WILL CHANGE THE USER’S .libPaths(), sim-
ilar to e.g., the checkpoint package. If FALSE, then libPath will be prepended
to .libPaths() during the Require call, resulting in shared packages, i.e., it
will include the user’s default package folder(s). This can be create dramatically
faster installs if the user has a substantial number of the packages already in
their personal library. Default FALSE to minimize package installing.

updateRprofile Logical or Character string. If TRUE, then this function will put several lines of
code in the current directory’s .Rprofile file setting up the package libraries
for this and future sessions. If a character string, then this should be the path
to an .Rprofile file. To reset back to normal, run setLibPaths() without a
libPath. Default: getOption("Require.updateRprofile", FALSE), mean-
ing FALSE, but it can be set with an option or within a single call.

exact Logical. This function will automatically append the R version number to the
libPaths to maintain separate R package libraries for each R version on the
system. There are some cases where this behaviour is not desirable. Set exact to
TRUE to override this automatic appending and use the exact, unaltered libPaths.
Default is FALSE

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

Details

This details of this code were modified from https://github.com/milesmcbain. A different,
likely non-approved by CRAN approach that also works is here: https://stackoverflow.com/
a/36873741/3890027.

Value

The main point of this function is to set .libPaths(), which will be changed as a side effect of this
function. As when setting options, this will return the previous state of .libPaths() allowing the
user to reset easily.

https://github.com/milesmcbain
https://stackoverflow.com/a/36873741/3890027
https://stackoverflow.com/a/36873741/3890027

setLinuxBinaryRepo 45

Examples

Not run:
if (Require:::.runLongExamples()) {

opts <- Require:::.setupExample()
origDir <- setwd(tempdir())
td <- tempdir()
setLibPaths(td) # set a new R package library locally
setLibPaths() # reset it to original
setwd(origDir)
Using standAlone = FALSE means that newly installed packages
will be installed
in the new package library, but loading packages can come
from any of the ones listed in .libPaths()

will have 2 or more paths
otherLib <- file.path(td, "newProjectLib")
setLibPaths(otherLib, standAlone = FALSE)
Can restart R, and changes will stay

remove the custom .libPaths()
setLibPaths() # reset to previous; remove from .Rprofile
because libPath arg is empty

Require:::.cleanup(opts)
unlink(otherLib, recursive = TRUE)

}

End(Not run)

setLinuxBinaryRepo Setup for binary Linux repositories

Description

Enable use of binary package builds for Linux from the RStudio Package Manager repo. This
will set the repos option, affecting the current R session. It will put this binaryLinux in the first
position. If the getOption("repos") is NULL, it will put backupCRAN in second position.

Usage

setLinuxBinaryRepo(
binaryLinux = urlForArchivedPkgs,
backupCRAN = srcPackageURLOnCRAN

)

46 setup

Arguments

binaryLinux A CRAN repository serving binary Linux packages.
backupCRAN If there is no CRAN repository set

setup Setup a project library, cache, options

Description

setup and setupOff are currently deprecated. These may be re-created in a future version. In its
place, a user can simply put .libPaths(libs, include.site = FALSE) in their .Rprofile file,
where libs is the directory where the packages should be installed and should be a folder with the
R version number, e.g., derived by using checkLibPaths(libs).

Usage

setup(
newLibPaths,
RPackageFolders,
RPackageCache = cacheGetOptionCachePkgDir(),
standAlone = getOption("Require.standAlone", TRUE),
verbose = getOption("Require.verbose")

)

setupOff(removePackages = FALSE, verbose = getOption("Require.verbose"))

Arguments

newLibPaths Same as RPackageFolders. This is for more consistent naming with Require(...,
libPaths = ...).

RPackageFolders

One or more folders where R packages are installed to and loaded from. In the
case of more than one folder provided, installation will only happen in the first
one.

RPackageCache See ?RequireOptions.
standAlone Logical. If TRUE, all packages will be installed to and loaded from the libPaths

only. NOTE: If TRUE, THIS WILL CHANGE THE USER’S .libPaths(), sim-
ilar to e.g., the checkpoint package. If FALSE, then libPath will be prepended
to .libPaths() during the Require call, resulting in shared packages, i.e., it
will include the user’s default package folder(s). This can be create dramatically
faster installs if the user has a substantial number of the packages already in
their personal library. Default FALSE to minimize package installing.

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

sourcePkgs 47

removePackages Deprecated. Please remove packages manually from the .libPaths()

sourcePkgs A list of R packages that should likely be installed from Source, not
Binary

Description

The list of R packages that Require installs from source on Linux, even if the getOptions("repos")
is a binary repository. This list can be updated by the user by modifying the options Require.spatialPkgs
or Require.otherPkgs. Default "force source only packages" are visible with RequireOptions().

Usage

sourcePkgs(additional = NULL, spatialPkgs = NULL, otherPkgs = NULL)

Arguments

additional Any other packages to be added to the other 2 argument vectors

spatialPkgs A character vector of package names that focus on spatial analyses.

otherPkgs A character vector of package names that often require system specific compi-
lation.

Value

A sorted concatenation of the 3 input parameters.

splitKeepOrderAndDTIntegrity

split for a data.table that keeps integrity of a column of lists of
data.table objects

Description

data.table::split does 2 bad things:

1. reorders if using f

2. destroys the integrity of a column that is a list of data.tables, when using by So, to keep order,
need by, but to keep integrity, need f. This function

Usage

splitKeepOrderAndDTIntegrity(pkgDT, splitOn)

48 sysInstallAndDownload

Arguments

pkgDT A pkgDT object e.g., from toPkgDT

splitOn Character vector passed to data.table::split(..., f = splitOn)

Value

A list of data.table objects of length(unique(splitOn)).

sysInstallAndDownload download.files or install.packages in a separate process

Description

This uses sys package so that messaging can be controlled. This also provides the option to paral-
lelize by spawning multiple background process to allow parallel e.g., downloads. Noting that if
libcurl is installed (and detected using capabilities("libcurl")), then no explicit parallelism
will be allowed, instead method = "libcurl" will be passed enabling parallel downloads.

Usage

sysInstallAndDownload(
args,
splitOn = "pkgs",
doLine = "outfiles <- do.call(download.packages, args)",
returnOutfile = FALSE,
doLineVectorized = TRUE,
tmpdir,
libPaths,
verbose

)

Arguments

args A list with all arguments for a do.call to either download.file, install.packagesor a custom other function e.g.,downloadAndBuildToLocalFile‘.

splitOn A character vector of the names in args to parallelize over. Defaults to pkgs.
All other named elements in args will be assumed to be length 1 and used for
every parallel process.

doLine A character string with the "outfiles <- do.call(..., args)" line.

returnOutfile A logical. If TRUE, then the names of the outfiles will be returned.
doLineVectorized

A logical. If TRUE, and parallism is being used, this indicates that the doLine is a
function that allows for multiple elements in args[[splitOn[[1]]]. If FALSE,
the function will make multiple sequential calls within each parallel process to
the doLine call.

tmpdir A single path where all downloads will be put

tempdir2 49

libPaths The library path (or libraries) where all packages should be installed, and looked
for to load (i.e., call library). This can be used to create isolated, stand alone
package installations, if used with standAlone = TRUE. Currently, the path sup-
plied here will be prepended to .libPaths() (temporarily during this call)
to Require if standAlone = FALSE or will set (temporarily) .libPaths() to
c(libPaths, tail(libPaths(), 1) to keep base packages.

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

Value

Mostly for side effects, namely installed packages or downloaded packages or files. However, in
the case of returnOutfile = TRUE, then a list of filenames will be returned with any outputs from
the doLine.

tempdir2 Make a temporary (sub-)directory

Description

Create a temporary subdirectory in .RequireTempPath(), or a temporary file in that temporary
subdirectory.

Usage

tempdir2(
sub = "",
tempdir = getOption("Require.tempPath", .RequireTempPath()),
create = TRUE

)

Arguments

sub Character string, length 1. Can be a result of file.path("smth", "smth2")
for nested temporary sub directories.

tempdir Optional character string where the temporary dir should be placed. Defaults to
.RequireTempPath()

create Logical. Should the directory be created. Default TRUE

See Also

tempfile2()

50 trimVersionNumber

tempfile2 Make a temporary subfile in a temporary (sub-)directory

Description

Make a temporary subfile in a temporary (sub-)directory

Usage

tempfile2(
sub = "",
tempdir = getOption("Require.tempPath", .RequireTempPath()),
...

)

Arguments

sub Character string, length 1. Can be a result of file.path("smth", "smth2")
for nested temporary sub directories.

tempdir Optional character string where the temporary dir should be placed. Defaults to
.RequireTempPath()

... passed to tempfile, e.g., fileext

See Also

tempdir2()

trimVersionNumber Trim version number off a compound package name

Description

The resulting string(s) will have only name (including github.com repository if it exists).

Usage

trimVersionNumber(pkgs)

Arguments

pkgs A character string vector of packages with or without GitHub path or versions

See Also

extractPkgName()

updatePackages 51

Examples

trimVersionNumber("PredictiveEcology/Require (<=0.0.1)")

updatePackages Update installed packages with latest available versions

Description

Similar to update.packages, but works for archived, non-archived, and Github packages.

Usage

updatePackages(
libPaths = .libPaths()[1],
purge = FALSE,
verbose = getOption("Require.verbose")

)

Arguments

libPaths The library to update; defaults to .libPaths()[1]

purge Logical. Should the assessment of installed.packages purge the cached ver-
sion. Default is FALSE

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

Value

Run for its side effect, namely, updating installed packages to their latest possible state, whether
they are on CRAN currently, archived, or on GitHub.

Index

∗ datasets
rversions, 42

.downloadFileMasterMainAuth, 8

.installed.pkgs, 10

.libPaths, 10

available.packagesCached
(dlArchiveVersionsAvailable),
21

availablePackagesOverride, 11
availableVersionOK, 12

base::Reduce, 29

cacheClearPackages, 12
cacheDefaultDir, 13
cacheDir, 13
cacheGetOptionCachePkgDir, 14
cachePkgDir (cacheDir), 13
cachePurge, 15
character, 9
checkLibPaths, 15
checkPath, 16
checkPath,character,logical-method

(checkPath), 16
checkPath,character,missing-method

(checkPath), 16
checkPath,missing,ANY-method

(checkPath), 16
checkPath,NULL,ANY-method (checkPath),

16
clearRequirePackageCache

(cacheClearPackages), 12
compareVersion2, 17

dealWithMissingLibPaths, 18
DESCRIPTIONFileOtherV

(DESCRIPTIONFileVersionV), 19
DESCRIPTIONFileVersionV, 19
detachAll, 20

dir.create(), 17
dlArchiveVersionsAvailable, 21
dlGitHubDESCRIPTION

(DESCRIPTIONFileVersionV), 19
doLibPaths, 22

envPkgCreate, 22
envPkgDepDepsCreate, 23
envPkgDepDESCFileCreate, 23
extractInequality (extractPkgName), 23
extractPkgGitHub (extractPkgName), 23
extractPkgName, 23
extractPkgName(), 50
extractVersionNumber (extractPkgName),

23

file.exists(), 17
fileRenameOrMove (linkOrCopy), 26

getDeps, 24
getRequireOptions (RequireOptions), 40

Install (Require-package), 3
invertList, 25

joinToAvailablePackages, 26

linkOrCopy, 26

masterMainToHead, 27
messageDF, 27
messageVerbose (messageDF), 27
messageVerboseCounter (messageDF), 27
modifyList2, 29
modifyList3 (modifyList2), 29

normPath, 30
normPath,character-method (normPath), 30
normPath,list-method (normPath), 30
normPath,logical-method (normPath), 30
normPath,missing-method (normPath), 30

52

INDEX 53

normPath,NULL-method (normPath), 30

paddedFloatToChar, 31
pakEnv, 32
parseGitHub, 32
pkgDep (pkgDepTopoSort), 34
pkgDep2 (pkgDepTopoSort), 34
pkgDepEnv, 33
pkgDepIfDepRemoved, 33
pkgDepTopoSort, 34
pkgSnapshot, 38
pkgSnapshot2 (pkgSnapshot), 38
purgeCache (cachePurge), 15

Require (Require-package), 3
Require-package, 3
RequireOptions, 40
rmBase, 42
rversions, 42

setdiffNamed, 43
setLibPaths, 43
setLinuxBinaryRepo, 45
setup, 46
setupOff (setup), 46
sourcePkgs, 47
splitKeepOrderAndDTIntegrity, 47
sysInstallAndDownload, 48

tempdir2, 49
tempdir2(), 50
tempfile2, 50
tempfile2(), 49
trimVersionNumber, 50
trimVersionNumber(), 24

updatePackages, 51
utils::available.packages, 5, 10, 11, 19,

21, 36, 39
utils::modifyList, 29

	Require-package
	.downloadFileMasterMainAuth
	.installed.pkgs
	availablePackagesOverride
	availableVersionOK
	cacheClearPackages
	cacheDefaultDir
	cacheDir
	cacheGetOptionCachePkgDir
	cachePurge
	checkLibPaths
	checkPath
	compareVersion2
	dealWithMissingLibPaths
	DESCRIPTIONFileVersionV
	detachAll
	dlArchiveVersionsAvailable
	doLibPaths
	envPkgCreate
	envPkgDepDepsCreate
	envPkgDepDESCFileCreate
	extractPkgName
	getDeps
	invertList
	joinToAvailablePackages
	linkOrCopy
	masterMainToHead
	messageDF
	modifyList2
	normPath
	paddedFloatToChar
	pakEnv
	parseGitHub
	pkgDepEnv
	pkgDepIfDepRemoved
	pkgDepTopoSort
	pkgSnapshot
	RequireOptions
	rmBase
	rversions
	setdiffNamed
	setLibPaths
	setLinuxBinaryRepo
	setup
	sourcePkgs
	splitKeepOrderAndDTIntegrity
	sysInstallAndDownload
	tempdir2
	tempfile2
	trimVersionNumber
	updatePackages
	Index

