
Package: SDMTools (via r-universe)
October 5, 2024

Type Package

Title Species Distribution Modelling Tools: Tools for processing data
associated with species distribution modelling exercises

Version 1.1-221.2

Date 2014-08-05

Author Jeremy VanDerWal, Lorena Falconi, Stephanie Januchowski, Luke
Shoo and Collin Storlie

Maintainer ORPHANED

Imports R.utils

Suggests adehabitat, raster, sp

Description This packages provides a set of tools for post processing
the outcomes of species distribution modeling exercises. It
includes novel methods for comparing models and tracking
changes in distributions through time. It further includes
methods for visualizing outcomes, selecting thresholds,
calculating measures of accuracy and landscape fragmentation
statistics, etc.. This package was made possible in part by
financial support from the Australian Research Council & ARC
Research Network for Earth System Science.

License GPL (>= 3)

URL http://www.rforge.net/SDMTools/

LazyLoad yes

NeedsCompilation yes

Date/Publication 2019-11-30 06:55:27 UTC

X-CRAN-Original-Maintainer Jeremy VanDerWal <jjvanderwal@gmail.com>

X-CRAN-Comment Orphaned and corrected on 2019-04-18 as check problems
were not corrected in time.

Repository https://predictiveecology.r-universe.dev

RemoteUrl https://github.com/cran/SDMTools

RemoteRef HEAD

RemoteSha 4f193c85e2d62db3ee3a07463fea8254c414c8d9

1

http://www.rforge.net/SDMTools/


2 accuracy

Contents
accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
asc.from.raster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
asc2dataframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
auc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
circular.averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
ClassStat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
COGravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
compare.matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
confusion.matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
ConnCompLabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
extract.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
getXYcoords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
grid.area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
grid.info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Istat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Kappa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
lcmw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
legend.gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
omission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
optim.thresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
PatchStat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
pnt.in.poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
put.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
quick.map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
read.asc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Scalebar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SigDiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
wt.mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
ZonalStat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Index 46

accuracy Measures of Model Accuracy

Description

accuracy estimates six measures of accuracy for presence-absence or presence-psuedoabsence
data. These include AUC, ommission rates, sensitivity, specificity, proportion correctly identified
and Kappa.

Note: this method will exclude any missing data.



accuracy 3

Usage

accuracy(obs, pred, threshold = 0.5)

Arguments

obs a vector of observed values which must be 0 for absences and 1 for occurrences

pred a vector of the same length as obs representing the predicted values. Values
must be between 0 & 1 prepresenting a likelihood.

threshold this can be:
a) a single value representing a single threshold between 0 & 1;
b) a vector of threshold values between 0 & 1; OR
c) an integer value representing the number of equal interval threshold values
between 0 & 1

Value

a data.frame with seven columns:

threshold the threshold values representing each row of data

AUC the AUC given the defined threshold value

ommission.rate the ommission rate as a proportion of true occurrences misidentified given the
defined threshold value

sensitivity the sensitivity given the defined threshold value

specificity the specificity given the defined threshold value

prop.correct the proportion of the presence and absence records correctly identified given the
defined threshold value

Kappa the Kappa statistic of the model given the defined threshold value

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

See Also

auc, Kappa, omission, sensitivity, specificity, prop.correct, confusion.matrix

Examples

#create some data
obs = c(sample(c(0,1),20,replace=TRUE),NA); obs = obs[order(obs)]
pred = runif(length(obs),0,1); pred = pred[order(pred)]

#calculate accuracy of the model with a single threshold value
accuracy(obs,pred,threshold=0.5)

#calculate accuracy given several defined thresholds
accuracy(obs,pred,threshold=c(0.33,0.5,0.66))



4 asc.from.raster

#calculate accuracy given a number of equal interval thresholds
accuracy(obs,pred,threshold=20)

asc.from.raster Raster conversion functions for adehabitat, raster and sp packages

Description

asc.from.raster and asc.from.sp extracts data from objects of class ’RasterLayer’ (raster pack-
age) and class ’SpatialGridDataFrame’ (sp package) into an object of class ’asc’ (SDMTools &
adehabitat packages).

raster.from.asc and sp.from.asc does the reverse.

as.asc creates an object of class ’asc’ (SDMTools & adehabitat packages) from a matrix of data.
Code & helpfile associated with as.asc were modified from adehabitat package.

Usage

asc.from.raster(x)

raster.from.asc(x, projs = NA)

asc.from.sp(x)

sp.from.asc(x, projs = CRS(as.character(NA)))

as.asc(x, xll = 1, yll = 1, cellsize = 1, type = c("numeric", "factor"),
lev = levels(factor(x)))

Arguments

x is an object of class ’asc’, ’RasterLayer’ or ’SpatialGridDataFrame’. For the
function as.asc, a matrix

projs is a CRS projection string of the Proj4 package
xll the x coordinate of the center of the lower left pixel of the map
yll the y coordinate of the center of the lower left pixel of the map
cellsize the size of a pixel on the studied map
type a character string. Either "numeric" or "factor"
lev if type = "factor", either a vector giving the labels of the factor levels, or the

name of a file giving the correspondence table of the map (see adehabitat as.asc
helpfile details)

Details

These functions provide capabilities of using scripts / functions from many packages including
adehabitat (plus e.g, SDMTools), sp (plus e.g., maptools, rgdal) and raster.



asc2dataframe 5

Value

Returns an object of class requested.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

Examples

#create a simple object of class 'asc'
tasc = as.asc(matrix(rep(x=1:10, times=1000),nr=100)); print(tasc)
str(tasc)

#convert to RasterLayer
traster = raster.from.asc(tasc)
str(traster)

#convert to SpatialGridDataFrame
tgrid = sp.from.asc(tasc)
str(tgrid)

#create a basic object of class asc
tasc = as.asc(matrix(rep(x=1:10, times=1000),nr=100)); print(tasc)

asc2dataframe Ascii Grid Files to Dataframe and Dataframe to Ascii Grid Files

Description

asc2dataframe converts a list of Esri ascii grid formatted files to a data.frame consisting of only
locations with data.

dataframe2asc converts a data.frame or matrix with spatial data to Esri ascii grid formatted files.

Usage

asc2dataframe(filenames, varnames = NULL, gz = FALSE)

dataframe2asc(tdata, filenames = NULL, outdir = getwd(), gz = FALSE)

Arguments

filenames is a vector of file names

varnames is a vector of names for the output columns, and must be the same length as files

tdata is the data.frame which has y, x coordinates (OR lat,lon) and columns for the
data to be output (MUST be in that order)

outdir is the output directory, the default is the current working directory

gz boolean defining if the ascii grid files are gzip compressed



6 asc2dataframe

Details

asc2dataframe: The ascii grid files can be read in gzip compress format. The dataframe returned
contains the X and Y coordinate columns followed by columns of data.

dataframe2asc: If filenames is null, column names will be used. The data.frame has to contain the
Y and X coordinates and the data as columns. The ascii grid files can be created as gzip compress
format and would be saved in the outdir.

Value

asc2dataframe Returns a dataframe with XY coordinates and the data of each ascii grid files, as
columns.

dataframe2asc Returns an asc grid file for each data column within the data.frame.

Author(s)

Lorena Falconi <lorefalconi@gmail.com>

Examples

#Create 2 ascii files
y=seq(10,50,0.5)
x=seq(140,180,0.5)
cellsize=0.5
data1=sample(160,140)
data2=sample(158,140)
out1.asc=as.asc(matrix(data1,nc=y, nr=x), xll=min(x), yll=min(y), cellsize=cellsize)
out2.asc=as.asc(matrix(data2,nc=y, nr=x), xll=min(x), yll=min(y), cellsize=cellsize)
#write the ascii files to the work directory
write.asc(out1.asc, 'out1.asc')
write.asc(out2.asc, 'out2.asc')
#list the ascii files
ascfiles=c('out1.asc', 'out2.asc')
#generate a dataframe from the ascii files
tdata=asc2dataframe(ascfiles)
tdata

#remove the files
unlink('out1.asc'); unlink('out2.asc')

#convert the dataframe tdata to ascii grid files
dataframe2asc(tdata)

#remove the files
unlink('var.1.asc'); unlink('var.2.asc')



auc 7

auc Area Under the Curve of the Reciever Operating Curve

Description

auc estimates the AUC of the ROC using a Mann-Whitney U statistic.

Note: this method will exclude any missing data.

Usage

auc(obs, pred)

Arguments

obs a vector of observed values which must be 0 for absences and 1 for occurrences

pred a vector of the same length as obs representing the predicted values. Values
must be between 0 & 1 representing a likelihood.

Value

Returns a single value represting the AUC value.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

See Also

Kappa, omission, sensitivity, specificity, prop.correct, confusion.matrix, accuracy

Examples

#create some data
obs = c(sample(c(0,1),20,replace=TRUE),NA)
pred = runif(length(obs),0,1)

#calculate AUC from the random data
auc(obs,pred)

#calculate an example 'perfect' AUC
obs = obs[order(obs)]
pred = pred[order(pred)]
auc(obs,pred)



8 circular.averaging

circular.averaging Circular Averaging based on Vector Averaging

Description

circular.averaging calculates the average direction (0 - 360) given a vector of directions.

vector.averaging calculates the average distance and direction given a vector of directions and a
vector of distances.

Usage

circular.averaging(direction, deg = TRUE)

vector.averaging(direction, distance, deg = TRUE)

Arguments

direction a vector of directions given in degrees (0 - 360) if deg==TRUE or in radians if
deg==FALSE

distance a vector of distances associated with each direction

deg a boolean object defining if direction is in degrees (TRUE) or radians (FALSE)

Details

functions return NA if the average distance or direction is not valid... e.g., when averaging directions
of 0 & 180 degrees, the result could theoretically be 90 or 270 but is practically neither.

Value

circular.averaging returns the average direction while vector.averaging returns a list with 2
elements distance & direction

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com> & Lorena Falconi <lorefalconi@gmail.com>

Examples

#EXAMPLE circular.averaging
circular.averaging(c(0,90,180,270)) #result is NA
circular.averaging(c(70,82,96,110,119,259))

#EXAMPLE vector.averaging
vector.averaging(c(10,20,70,78,108), distance=10)
vector.averaging(c(159,220,258,273,310),distance=runif(5))



ClassStat 9

ClassStat Landscape Class Statistics

Description

ClassStat calculates the class statistics for patch types identified in a matrix of data or in a raster
of class ’asc’ (SDMTools & adehabitat packages), ’RasterLayer’ (raster package) or ’SpatialGrid-
DataFrame’ (sp package).

Usage

ClassStat(mat, cellsize = 1, bkgd = NA, latlon = FALSE)

Arguments

mat a matrix of data with patches identified as classes (unique integer values) as e.g.,
a binary lanscape of a species distribution or a vegetation map. Matrix can be
a raster of class ’asc’ (adehabitat package), ’RasterLayer’ (raster package) or
’SpatialGridDataFrame’ (sp package)

cellsize cell size (in meters) is a single value representing the width/height of cell edges
(assuming square cells)

bkgd the background value for which statistics will not be calculated

latlon boolean value representing if the data is geographic. If latlon == TRUE, matrix
must be of class ’asc’, ’RasterLayer’ or ’SpatialGridDataFrame’

Details

The class statistics are based on statistics calculated by fragstats http://www.umass.edu/landeco/
research/fragstats/fragstats.html.

Value

a data.frame listing

class a particular patch type from the original input matrix (mat).

n.patches the number of patches of a particular patch type or in a class.

total.area the sum of the areas (m2) of all patches of the corresponding patch type.

prop.landscape the proportion of the total lanscape represented by this class

patch.density the numbers of patches of the corresponding patch type divided by total land-
scape area (m2).

total.edge the total edge length of a particular patch type.

edge.density edge length on a per unit area basis that facilitates comparison among landscapes
of varying size.

http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://www.umass.edu/landeco/research/fragstats/fragstats.html


10 ClassStat

landscape.shape.index

a standardized measure of total edge or edge density that adjusts for the size of
the landscape.

largest.patch.index

largest patch index quantifies the percentage of total landscape area comprised
by the largest patch.

mean.patch.area

average area of patches.

sd.patch.area standard deviation of patch areas.

min.patch.area the minimum patch area of the total patch areas.

max.patch.area the maximum patch area of the total patch areas.
perimeter.area.frac.dim

perimeter-area fractal dimension equals 2 divided by the slope of regression line
obtained by regressing the logarithm of patch area (m2) against the logarithm of
patch perimeter (m).

mean.perim.area.ratio

the mean of the ratio patch perimeter. The perimeter-area ratio is equal to the
ratio of the patch perimeter (m) to area (m2).

sd.perim.area.ratio

standard deviation of the ratio patch perimeter.
min.perim.area.ratio

minimum perimeter area ratio
max.perim.area.ratio

maximum perimeter area ratio.
mean.shape.index

mean of shape index

sd.shape.index standard deviation of shape index.
min.shape.index

the minimum shape index.
max.shape.index

the maximum shape index.
mean.frac.dim.index

mean of fractal dimension index.
sd.frac.dim.index

standard deviation of fractal dimension index.
min.frac.dim.index

the minimum fractal dimension index.
max.frac.dim.index

the maximum fractal dimension index.
total.core.area

the sum of the core areas of the patches (m2).
prop.landscape.core

proportional landscape core
mean.patch.core.area

mean patch core area.



ClassStat 11

sd.patch.core.area

standard deviation of patch core area.
min.patch.core.area

the minimum patch core area.
max.patch.core.area

the maximum patch core area.
prop.like.adjacencies

calculated from the adjacency matrix, which shows the frequency with which
different pairs of patch types (including like adjacencies between the same patch
type) appear side-by-side on the map (measures the degree of aggregation of
patch types).

aggregation.index

computed simply as an area-weighted mean class aggregation index, where each
class is weighted by its proportional area in the landscape.

lanscape.division.index

based on the cumulative patch area distribution and is interpreted as the prob-
ability that two randomly chosen pixels in the landscape are not situated in the
same patch

splitting.index

based on the cumulative patch area distribution and is interpreted as the effective
mesh number, or number of patches with a constant patch size when the land-
scape is subdivided into S patches, where S is the value of the splitting index.

effective.mesh.size

equals 1 divided by the total landscape area (m2) multiplied by the sum of patch
area (m2) squared, summed across all patches in the landscape.

patch.cohesion.index

measures the physical connectedness of the corresponding patch type.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

References

McGarigal, K., S. A. Cushman, M. C. Neel, and E. Ene. 2002. FRAGSTATS: Spatial Pattern
Analysis Program for Categorical Maps. Computer software program produced by the authors at
the University of Massachusetts, Amherst. Available at the following web site: www.umass.edu/
landeco/research/fragstats/fragstats.html

See Also

PatchStat, ConnCompLabel

Examples

#define a simple binary matrix
tmat = { matrix(c( 0,0,0,1,0,0,1,1,0,1,

0,0,1,0,1,0,0,0,0,0,

www.umass.edu/landeco/research/fragstats/fragstats.html
www.umass.edu/landeco/research/fragstats/fragstats.html


12 COGravity

0,1,NA,1,0,1,0,0,0,1,
1,0,1,1,1,0,1,0,0,1,
0,1,0,1,0,1,0,0,0,1,
0,0,1,0,1,0,0,1,1,0,
1,0,0,1,0,0,1,0,0,1,
0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,0,0,1,
1,1,1,0,0,0,0,0,0,1),nr=10,byrow=TRUE) }

#do the connected component labelling
ccl.mat = ConnCompLabel(tmat)
ccl.mat
image(t(ccl.mat[10:1,]),col=c('grey',rainbow(length(unique(ccl.mat))-1)))

#calculate the patch statistics
ps.data = PatchStat(ccl.mat)
ps.data

#calculate the class statistics
cl.data = ClassStat(tmat)
cl.data

#identify background data is 0
cl.data = ClassStat(tmat,bkgd=0)
cl.data

COGravity Centre of Gravity or Mass calculations for spatial data

Description

COGravity calculates the Centre of Gravity (or also known as Centre of Mass) for point or raster
spatial data.

Note: NA data is automatically ommitted from analysis.

Usage

COGravity(x, y = NULL, z = NULL, wt = NULL)

Arguments

x a vector of e.g., longitudes or eastings, or a raster of class ’asc’, ’RasterLayer’
or ’SpatialGridDataFrame’.

y a vector of e.g., latitudes or northings.

z a vector of e.g., elevations.

wt a vector or raster of class ’asc’, ’RasterLayer’ or ’SpatialGridDataFrame’ repre-
senting weights for data.



compare.matrix 13

Details

For raster-based data, if wt is missing, the values of the ascii are assumed to be the weights; other-
wise, the values are assumed to be the z values.

Value

Returns a named vector of data representing the Centre of Gravity in x, y & z dimensions (depending
on data supplied).

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

Examples

#create some points
x = seq(154,110,length=25)
y = seq(-10,-54,length=25)
z = seq(100,200,length=25)
wt = runif(25) #random weights
#calculate the Centre of Gravity for these points
COGravity(x,y,z,wt)

#create a simple objects of class 'asc'
x = as.asc(matrix(1:50,nr=50,nc=50))
wt = as.asc(matrix(runif(50),nr=50,nc=50))

#calculate COG with weighting defined in x
COGravity(x)
#calculate COG with weighting defined in wt (values in x are assumed elevation (z))
COGravity(x,wt=wt)

compare.matrix Biplot Comparison of Matrices

Description

compare.matrix compares the values within two matrices (e.g., ESRI ArcInfo ASCII raster files)
and produces a biplot that shows the frequency of each data combination shared between the matri-
ces. The plot is overlayed with contour lines that demarcate parts of the the plot that share the same
frequency of data combinations.

NOTE: it is assumed the matrices are of the same extent, cell size and scaled to be the same units.

Usage

compare.matrix(x, y, nbins, ...)



14 confusion.matrix

Arguments

x a matrix of data; the matrix can be a raster of class ’asc’ (adehabitat package),
’RasterLayer’ (raster package) or ’SpatialGridDataFrame’ (sp package)

y a matrix of data of the same extent, cell size and class as ’x’

nbins number of equally spaced bins used to partition range of values in ’x’ & ’y’

... other graphical parameters defined by image(), contour(), or plot()

Value

Nothing is returned but images are created.

Author(s)

Luke Shoo <luke.shoo@jcu.edu.au>

Examples

#create some simple objects of class 'asc'
tasc = as.asc(matrix(rep(x=1:10, times=1000),nr=100)); print(tasc)
#modify the asc objects so that they are slightly different
tasc1 = tasc + runif(n = 10000, min = -1, max = 1)
tasc2 = tasc + rnorm(n = 10000, mean = 1, sd = 1)

#create some images
#basic plot showing the density of data combinations shared
#by the two matrices
compare.matrix(tasc1,tasc2,20)

#same as previous but with data partioned amoung more bins
compare.matrix(tasc1,tasc2,50)

#same as previous but altering the number of contour levels
#and adding more graphical functions
compare.matrix(tasc1,tasc2,50,nlevels=5, xlab='asc1',ylab='asc2',

main='Comparison between asc and asc2', bg="grey")

confusion.matrix Confusion Matrix

Description

confusion.matrix calculates a confusion matrix.

Note: this method will exclude any missing data

Usage

confusion.matrix(obs, pred, threshold = 0.5)



ConnCompLabel 15

Arguments

obs a vector of observed values which must be 0 for absences and 1 for occurrences
pred a vector of the same length as obs representing the predicted values. Values

must be between 0 & 1 prepresenting a likelihood.
threshold a single threshold value between 0 & 1

Value

Returns a confusion matrix (table) of class ’confusion.matrix’ representing counts of true & false
presences and absences.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

See Also

auc, Kappa, omission, sensitivity, specificity, prop.correct, accuracy

Examples

#create some data
obs = c(sample(c(0,1),20,replace=TRUE),NA); obs = obs[order(obs)]
pred = runif(length(obs),0,1); pred = pred[order(pred)]

#calculate the confusion matrix
confusion.matrix(obs,pred,threshold=0.5)

ConnCompLabel Connected Components Labelling – Unique Patch Labelling

Description

ConnCompLabel is a 1 pass implementation of connected components labelling. Here it is applied
to identify disjunt patches within a distribution.

The raster matrix can be a raster of class ’asc’ (adehabitat package), ’RasterLayer’ (raster pack-
age) or ’SpatialGridDataFrame’ (sp package).

Usage

ConnCompLabel(mat)

Arguments

mat is a binary matrix of data with 0 representing background and 1 representing
environment of interest. NA values are acceptable. The matrix can be a raster
of class ’asc’ (this & adehabitat package), ’RasterLayer’ (raster package) or
’SpatialGridDataFrame’ (sp package)



16 destination

Value

A matrix of the same dim and class of mat in which unique components (individual patches) are
numbered 1:n with 0 remaining background value.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

References

Chang, F., C.-J. Chen, and C.-J. Lu. 2004. A linear-time component-labeling algorithm using
contour tracing technique. Comput. Vis. Image Underst. 93:206-220.

See Also

PatchStat, ClassStat

Examples

#define a simple binary matrix
tmat = { matrix(c( 0,0,0,1,0,0,1,1,0,1,

0,0,1,0,1,0,0,0,0,0,
0,1,NA,1,0,1,0,0,0,1,
1,0,1,1,1,0,1,0,0,1,
0,1,0,1,0,1,0,0,0,1,
0,0,1,0,1,0,0,1,1,0,
1,0,0,1,0,0,1,0,0,1,
0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,0,0,1,
1,1,1,0,0,0,0,0,0,1),nr=10,byrow=TRUE) }

#do the connected component labelling
ccl.mat = ConnCompLabel(tmat)
ccl.mat
image(t(ccl.mat[10:1,]),col=c('grey',rainbow(length(unique(ccl.mat))-1)))

destination Vincenty Direct Calculation of a Destination

Description

destination estimates the destination latitude and longitude given a starting latitude and longi-
tude, a bearing and distance.

For general information on Vincenty’s formula, see e.g., http://en.wikipedia.org/wiki/Vincenty’
s_formulae. It states:
Vincenty’s formulae are two related iterative methods used in geodesy to calculate the distance be-
tween two points on the surface of an spheroid, developed by Thaddeus Vincenty in 1975. They

http://en.wikipedia.org/wiki/Vincenty's_formulae
http://en.wikipedia.org/wiki/Vincenty's_formulae


destination 17

are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more
accurate than methods such as great-circle distance which assume a spherical Earth.

Note: this method assumes a locations are lat & lon given in WGS 84.

Usage

destination(lat, lon, bearing, distance)

Arguments

lat a single value or vector of values representing latitude in decimal degrees from
-90 to 90 degrees.

lon a single value or vector of values representing longitude in decimal degrees from
-180 to 180 degrees.

bearing a single value or vector of values representing the bearings (directions) of inter-
est ranging from 0 to 360 degrees.

distance a single value or vector of values representing the distances in metres to the
destination.

Details

Typical useages are:

1. a single start location, bearing and distance to give a single output location
–output would be a single destination location

2. a single start location with one or more bearings or distances to give multiple output locations
–output would be a destination locations for each combination of bearings and distances

3. multiple start locations with a single bearing or distance
–output would be a destination locations representing the bearing and distance from each of
the start locations

4. multiple start locations with multiple bearings or distances
–output would be a destination locations representing the combinations of bearings and dis-
tances from each of the start locations
– NOTE that the bearing and distance vectors must be of the same length of the input lat and
long.

See examples for all possible usages.

Value

Returns a data.frame with:

lon1 the original longitude

lat1 the original latitude

bearing the bearing used

distance the distance used



18 destination

lon2 the destination longitude

lat2 the destination latitude

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

Source

The source code here was modified from http://www.movable-type.co.uk/scripts/latlong-vincenty-direct.
html.

Destinations were validated against Geoscience Australia calculations (http://www.ga.gov.au/
geodesy/datums/vincenty_direct.jsp).

References

Vincenty, T. 1975. Direct and Inverse Solutions of Geodesics on the Ellipsoid with application
of Nested Equations. Survey Review, vol XXII no 176. http://www.ngs.noaa.gov/PUBS_LIB/
inverse.pdf

Examples

###single lat lons
lats = -85; lons = 165
#single bearing & single distance
destination(lats,lons,bearing=180,distance=500000)

#multiple bearings
destination(lats,lons,bearing=seq(0,360,length.out=9),distance=500000)

#multiple bearings
destination(lats,lons,bearing=45,distance=seq(0,5000000,length.out=11))

#multiple bearings, multiple distances
destination(lats,lons,bearing=seq(0,360,length.out=9),

distance=seq(0,5000000,length.out=11))

###multiple lat lons
lats = seq(-90,90,length.out=9); lons = seq(-180,180,length.out=9)

#multiple lat lons but single bearings / distances
destination(lats,lons,bearing=45,distance=500000)

#different bearings for each lat lon
destination(lats,lons,bearing=seq(0,360,length.out=9),distance=500000)

#different distances for each lat lon
destination(lats,lons,bearing=45,distance=seq(0,5000000,length.out=9))

#different bearings & distances for each lat lon

http://www.movable-type.co.uk/scripts/latlong-vincenty-direct.html
http://www.movable-type.co.uk/scripts/latlong-vincenty-direct.html
http://www.ga.gov.au/geodesy/datums/vincenty_direct.jsp
http://www.ga.gov.au/geodesy/datums/vincenty_direct.jsp
http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf


distance 19

destination(lats,lons,bearing=seq(0,360,length.out=9),
distance=seq(0,5000000,length.out=9))

distance Vincenty Direct Calculation of Distance and Direction

Description

distance estimates the distance given a starting & ending latitude and longitude.

For general information on Vincenty’s formula, see e.g., http://en.wikipedia.org/wiki/Vincenty’
s_formulae. It states:
Vincenty’s formulae are two related iterative methods used in geodesy to calculate the distance be-
tween two points on the surface of an spheroid, developed by Thaddeus Vincenty in 1975. They
are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more
accurate than methods such as great-circle distance which assume a spherical Earth.

Note: this method assumes a locations are lat & lon given in WGS 84.

Direction, if requested, is the the initial bearing (sometimes referred to as forward azimuth) for
which one would follow as a straight line along a great-circle arc from start to finish.

Note: this will fail if there are NA’s in the data.

Usage

distance(lat1, lon1 = NULL, lat2 = NULL, lon2 = NULL, bearing = FALSE)

Arguments

lat1 a single value or vector of values representing latitude in decimal degrees from
-90 to 90 degrees. Alternatively, a data.frame or matrix can be used here with
each column representing lat1, lon1, lat2, lon2 (in that order).

lon1 a single value or vector of values representing longitude in decimal degrees from
-180 to 180 degrees. If NULL, lat1 is assumed to be a matrix or data.frame.

lat2 a single value or vector of values representing latitude in decimal degrees from
-90 to 90 degrees. If NULL, lat1 is assumed to be a matrix or data.frame.

lon2 a single value or vector of values representing longitude in decimal degrees from
-180 to 180 degrees. If NULL, lat1 is assumed to be a matrix or data.frame.

bearing boolean value as to calculate the direction as well as the distance.

Value

Returns a data.frame with:

lon1 the original longitude

http://en.wikipedia.org/wiki/Vincenty's_formulae
http://en.wikipedia.org/wiki/Vincenty's_formulae


20 extract.data

lat1 the original latitude
lon2 the destination longitude
lat2 the destination latitude
distance the distance used
bearing if requested, the bearing between the two points

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

Source

The source code for the distance algorithm here was modified from http://www.movable-type.
co.uk/scripts/latlong-vincenty.html.

Distances were validated against Geoscience Australia calculations (http://www.ga.gov.au/geodesy/
datums/vincenty_inverse.jsp).

Bearings were from multiple sources including http://williams.best.vwh.net/avform.htm#
Crs.

References

Vincenty, T. 1975. Direct and Inverse Solutions of Geodesics on the Ellipsoid with application
of Nested Equations. Survey Review, vol XXII no 176. http://www.ngs.noaa.gov/PUBS_LIB/
inverse.pdf

See Also

destination

Examples

#get the distance of 1 degree longitude at each 5 degrees latitude from -90 to 90
distance(lat1=seq(-90,90,5),lon1=rep(0,37),lat2=seq(-90,90,5),lon2=rep(1,37),bearing=TRUE)

extract.data Spatial Join of Points with Raster Grids

Description

extract.data extracts data from raster object of class ’asc’ (this and the adehabitat package),
’RasterLayer’ (raster package) or ’SpatialGridDataFrame’ (sp package) at specified locations. This
represents a faster version of ’join.asc’ of the adehabitat package that assumes all locations are
within the map extents.

Note: there is no interpolation done here. The values reported are simply the values of the raster
cell the point falls into.

http://www.movable-type.co.uk/scripts/latlong-vincenty.html
http://www.movable-type.co.uk/scripts/latlong-vincenty.html
http://www.ga.gov.au/geodesy/datums/vincenty_inverse.jsp
http://www.ga.gov.au/geodesy/datums/vincenty_inverse.jsp
http://williams.best.vwh.net/avform.htm#Crs
http://williams.best.vwh.net/avform.htm#Crs
http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf


getXYcoords 21

Usage

## S3 method for class 'data'
extract(pts, x)

Arguments

pts a two-column data frame or matrix with the x and y coordinates of the locations
of interest.

x a raster matrix of class ’asc’ (this and the adehabitat package), ’RasterLayer’
(raster package) or ’SpatialGridDataFrame’ (sp package)

Details

Implements a faster version of ’join.asc’ from the adehabitat package.

NOTE: this assumes all locations are within the extent of the raster map. Values outside the extent
will be given a value of NA.

Value

Returns a vector equal in length to the number of locations in pnts.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

Examples

#create a simple object of class 'asc'
tasc = as.asc(matrix(1:50,nr=50,nc=50)); print(tasc)

#define some point locations
points = data.frame(x=runif(25,1,50),y=runif(25,1,50))

#extract the data
points$values = extract.data(points,tasc)

#show the data
print(points)

getXYcoords Computes the X and Y Coordinates of the Pixels of a Raster Map

Description

getXYcoords computes the geographical coordinates of the rows and columns of pixels of a raster
map of class asc. Code & helpfile were modified from adehabitat package.



22 grid.area

Usage

getXYcoords(w)

Arguments

w an object of class asc.

Value

Returns a list with two components:

x the x coordinates of the columns of pixels of the map

y the y coordinates of the rows of pixels of the map

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

Examples

tasc = as.asc(matrix(rep(x=1:10, times=1000),nr=100)); print(tasc)
getXYcoords(tasc)

grid.area Create a Grid of Cell Areas or Perimeters

Description

Creates a grid of cell areas or perimeters for spatial grids in geographic (lat-lon) projections.

Usage

grid.area(mat)

grid.perimeter(mat)

Arguments

mat a matrix representing a raster of class ’asc’ (this & adehabitat package), ’Raster-
Layer’ (raster package) or ’SpatialGridDataFrame’ (sp package)

Value

grid.area Returns an ascii grid file which contains the values of the area in each cell.

grid.perimter Returns an ascii grid file which contains the values of the perimeter in each cell.



grid.info 23

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com> & Lorena Falconi <lorefalconi@gmail.com>

Examples

#Create an ascii file
y=seq(10,50,0.5)
x=seq(140,180,0.5)
cellsize=0.5
data1=sample(160,140)
out1.asc=as.asc(matrix(data1,nc=y, nr=x), xll=min(x), yll=min(y), cellsize=cellsize)

grid.area(out1.asc)[,]

grid.perimeter(out1.asc)[,]

grid.info Grid Information from Geographic (lat lon) Projections

Description

Since spatial grids in geographic projections do not have equal area or perimeters, grid.info ex-
tracts perimeter & area related information for latitudinal bands with differing longitudinal widths.

Outputs lengths are in m using Vincenty’s equation (distance)and areas in m2. Surface areas
are calculated summing surface areas of spherical polygons as estimated using l’Huiller’s formula.

Usage

grid.info(lats, cellsize, r = 6378137)

Arguments

lats is a vector of latitudes representing the midpoint of grid cells
cellsize is a single value (assuming square cells) or a two value vector (rectangular cells)

representing the height (latitude) and width (longitude) of the cells
r is a single value representing the radius of the globe in m. Default is for the

WGS84 elipsoid

Value

a data.frame listing:

lat the latitude representing the midpoint of the cell
top length of the top of the cell (m)
bottom length of the bottom of the cell (m)
side length of the side of the cell (m)
diagnal length of the diagnals of the cell (m)
area area of the cell (m2)



24 Istat

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

References

information on l’Huiller’s formula http://williams.best.vwh.net/avform.htmformoreinfo)
code for estimating area of polygon on sphere was modified from http://forum.worldwindcentral.
com/showthread.php?t=20724

Examples

#show output for latitudes from -87.5 to 87.5 at 5 degree intervals
grid.info(lats=seq(-87.5,87.5,5), 5)

Istat I Similarity Statistic for Quantifying Niche Overlap

Description

Istat computes the I similarity statistic of Warren et al. 2008. It is a method for defining niche
overlap from predictions of species’ distributions.

NOTE: it is assumed the input data are of the same extent and cellsize, and all values are posi-
tive.

Usage

Istat(x, y, old = FALSE)

Arguments

x a vector or matrix of data; the matrix can be a raster of class ’asc’ (adehabitat
package), ’RasterLayer’ (raster package) or ’SpatialGridDataFrame’ (sp pack-
age)

y a vector or matrix of data with the same dimensions and class of ’x’

old a boolean identifying if "old" equation is to be used (see description). This was
kept for legacy issues.

Details

The I similarity statistic sums the pair-wise differences between two predictions to create a single
value representing the similarity of the two distributions. The I similarity statistic ranges from
a value of 0, where two distributions have no overlap, to 1 where two distributions are identical
(Warren et al., 2008).

NOTE: updated to correct equation but not to worry about old... see explanation at http://
enmtools.blogspot.com.au/2010_09_01_archive.html.

http://williams.best.vwh.net/avform.htm for moreinfo)
http://forum.worldwindcentral.com/showthread.php?t=20724
http://forum.worldwindcentral.com/showthread.php?t=20724
http://enmtools.blogspot.com.au/2010_09_01_archive.html
http://enmtools.blogspot.com.au/2010_09_01_archive.html


Kappa 25

Value

A single value that is the I similarity statistic

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

References

Warren, D. L., R. E. Glor, M. Turelli, and D. Funk. 2008. Environmental Niche Equivalency versus
Conservatism: Quantitative Approaches to Niche Evolution. Evolution 62:2868-2883.

Examples

#create some simple objects of class 'asc'
tasc = as.asc(matrix(1:50,nr=50,nc=50)); print(tasc)
#modify the asc objects so that they are slightly different
tasc1 = tasc + runif(n = 2500, min = -1, max = 1)
tasc2 = tasc + rnorm(n = 2500, mean = 1, sd = 1)

#ensure all data is positive
tasc1 = abs(tasc1)
tasc2 = abs(tasc2)

#calculate the I similarity statistic
I = Istat(tasc1,tasc2)
print(I) #high niche overlap

#using a more variable map
tasc2 = tasc + rnorm(n = 2500, mean = 25, sd = 15);tasc2 = abs(tasc2)
I = Istat(tasc1,tasc2)
print(I) #lower niche overlap

Kappa Kappa Statistic

Description

Kappa estimates the Kappa statistic for model accuracy.

Usage

Kappa(mat)

Arguments

mat a confusion matrix of class ’confusion.matrix’ from confusion.matrix



26 lcmw

Value

Returns a single value represting the Kappa statistic.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

See Also

auc, omission, sensitivity, specificity, prop.correct, confusion.matrix, accuracy

Examples

#create some data
obs = c(sample(c(0,1),20,replace=TRUE),NA); obs = obs[order(obs)]
pred = runif(length(obs),0,1); pred = pred[order(pred)]

#calculate the confusion matrix
mat = confusion.matrix(obs,pred,threshold=0.5)

#calculate the Kappa statistic
Kappa(mat)

lcmw Least Cost Moving Windows Calculation

Description

This is a moving window that for each cell returns the minimum ’cost’ based on surrounding data
cells and some dispersal distance cost.

Usage

lcmw(mat, mw, mnc)

Arguments

mat a matrix of values that can be based on a raster dataset. Lower values should rep-
resent lower cost. The matrix can be a raster of class ’asc’ (adehabitat package),
’RasterLayer’ (raster package) or ’SpatialGridDataFrame’ (sp package)

mw a distance-cost matrix to be applied to each cell of ’mat’. This matrix can be
dispersal costs. Lower values should represent lower cost.

mnc an integer value representing the radius for ’mw’ in number of cells.

Details

This method moves over the matrix of values, summing the moving window cost mw and the matrix
mat, returning the minimum cost value. This was created to estimate the least cost path through
time for all cells in a matrix (see example).



legend.gradient 27

Value

A matrix of values of the same dimensions and class as input mat

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

Examples

#create a simple object of class 'asc'
tasc = as.asc(matrix(1:100,nr=10,nc=10)); print(tasc)

#show the input matrix
print(tasc[1:10,1:10])

#vary the moving windows

###no cost window of 2 cell radius
tcost = matrix(0,nr=5,nc=5); print(tcost)
out = lcmw(tasc, tcost, 2); print(out[1:10,1:10])

###no cost with a circular radius of 2
tcost = matrix(NA,nr=5,nc=5)
#populate the distances
for (y in 1:5){

for (x in 1:5){
tcost[y,x] = sqrt((3-y)^2 + (3-x)^2)

}
}

#remove distance values > max.num.cells
tcost[which(tcost>2)]=NA

#no cost matrix
tcost1 = tcost; tcost1[is.finite(tcost1)]=1; print(tcost1)
out = lcmw(tasc, tcost1, 2); print(out[1:10,1:10])

#linear cost
tcost = tcost/2; print(tcost)
out = lcmw(tasc, tcost, 2); print(out[1:10,1:10])

legend.gradient Legend Gradient

Description

legend.gradient creates and displays a gradient legend on a plot or image file. The place and size
of the legend is defined by coordinates, previously identified.



28 legend.gradient

Usage

legend.gradient(pnts, cols = heat.colors(100), limits = c(0, 1),
title = "Legend", ...)

Arguments

pnts x and y coordinates of the gradient location in the plot

cols a set of 2 or more colors used in the image, to create the gradient

limits to label the min and max values of the gradient in the legend

title to specify the title of the legend

... other graphical parameters defined by image() or plot()

Value

nothing is returned, a gradient legend is added to a plot or a image.

Author(s)

Lorena Falconi <lorefalconi@gmail.com>

Examples

#define a simple binary matrix
tmat = { matrix(c( 0,0,0,1,0,0,1,1,0,1,

0,0,1,0,1,0,0,0,0,0,
0,1,NA,1,0,1,0,0,0,1,
1,0,1,1,1,0,1,0,0,1,
0,1,0,1,0,1,0,0,0,1,
0,0,1,0,1,0,0,1,1,0,
1,0,0,1,0,0,1,0,0,0,
0,1,0,0,0,1,0,NA,NA,NA,
0,0,1,1,1,0,0,NA,NA,NA,
1,1,1,0,0,0,0,NA,NA,NA),nr=10,byrow=TRUE) }

#do the connected component labeling
tasc = ConnCompLabel(tmat)

# Create a color ramp
colormap=c("grey","yellow","yellowgreen","olivedrab1","lightblue4")

#create an image
image(tasc,col=colormap, axes=FALSE, xlab="", ylab="", ann=FALSE)

#points for the gradient legend
pnts = cbind(x =c(0.8,0.9,0.9,0.8), y =c(1.0,1.0,0.8,0.8))

#create the gradient legend
legend.gradient(pnts,colormap,c("Low","High"))



omission 29

omission Measures of Accuracy

Description

Estimates different measures of accurracy given a confusion matrix.

Usage

omission(mat)

sensitivity(mat)

specificity(mat)

prop.correct(mat)

Arguments

mat a confusion matrix of class ’confusion.matrix’ from confusion.matrix

Value

returns single values representing the:

ommission the ommission rate as a proportion of true occurrences misidentified given the
defined threshold value

sensitivity the sensitivity given the defined threshold value

specificity the specificity given the defined threshold value

prop.correct the proportion of the presence and absence records correctly identified given the
defined threshold value

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

See Also

auc, Kappa, confusion.matrix, accuracy

Examples

#create some data
obs = c(sample(c(0,1),20,replace=TRUE),NA); obs = obs[order(obs)]
pred = runif(length(obs),0,1); pred = pred[order(pred)]

#calculate the confusion matrix
mat = confusion.matrix(obs,pred,threshold=0.5)



30 optim.thresh

#calculate the accuracy measures
omission(mat)
sensitivity(mat)
specificity(mat)
prop.correct(mat)

optim.thresh Estimation of Optimal Threshold Values

Description

optim.thresh estimates optimal threshold values given eight methods.

Note: this method will exclude any missing data.

Usage

optim.thresh(obs, pred, threshold = 101)

Arguments

obs a vector of observed values which must be 0 for absences and 1 for occurrences

pred a vector of the same length as obs representing the predicted values. Values
must be between 0 & 1 representing a likelihood.

threshold a single integer value representing the number of equal interval threshold values
between 0 & 1

Value

Returns a list of the optimal thresholds for the different methods. If the list item is a single value,
that is the optimal threshold but if two values are reported for the method, this represents the range
in thresholds that are equal for that threshold selection method.

The returned list includes the single or range in thresholds selected using the following methods:

min.occurence.prediction

is the minimum prediction for the occurrence (presence) records
mean.occurence.prediction

is the mean prediction for the occurrence (presence) records
’10.percent.omission’

is the threshold value or range in values that excludes approx. 10 percent of the
occurrence records

’sensitivity=specificity’

is the threshold value or range in values where sensitivity is equal to sensitivity
’max.sensitivity+specificity’

is the threshold value or range in values that maximizes sensitivity plus speci-
ficity



PatchStat 31

maxKappa is the threshold value or range in values with the maximum Kappa statistic
max.prop.correct

is the threshold value or range in values with the maximum proportion of pres-
ence and absence records correctly identified

min.ROC.plot.distance

is the threshold value or range in values where the ROC curve is closest to point
(0,1) (or perfect fit)

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

See Also

accuracy, auc, Kappa, omission, sensitivity, specificity, prop.correct, confusion.matrix

Examples

#create some data
obs = c(sample(c(0,1),20,replace=TRUE),NA); obs = obs[order(obs)]
pred = runif(length(obs),0,1); pred = pred[order(pred)]

#calculate the optimal thresholds
optim.thresh(obs,pred)

PatchStat Landscape Patch Statistics

Description

PatchStat calculates the patch statistics for individual patches identified in a matrix of data. The
matrix can be a raster of class ’asc’ (adehabitat package), ’RasterLayer’ (raster package) or ’Spa-
tialGridDataFrame’ (sp package).

Usage

PatchStat(mat, cellsize = 1, latlon = FALSE)

Arguments

mat a matrix of data with individual patches identified as with ConnCompLabel; The
matrix can be a raster of class ’asc’ (this & adehabitat package), ’RasterLayer’
(raster package) or ’SpatialGridDataFrame’ (sp package)

cellsize cell size (in meters) is a single value representing the width/height of cell edges
(assuming square cells)

latlon boolean value representing if the data is geographic. If latlon == TRUE, matrix
must be of class ’asc’, ’RasterLayer’ or ’SpatialGridDataFrame’



32 PatchStat

Details

The patch statistics are based on statistics calculated by fragstats http://www.umass.edu/landeco/
research/fragstats/fragstats.html.

Value

a data.frame listing

patchID the unique ID for each patch.

n.cell the number of cells for each patch, specified in square meters.

n.core.cell the number of cells in the core area, without the edge area.
n.edges.perimeter

the number of outer perimeter cell edges of the patch.
n.edges.internal

the number of internal cell edges of the patch.

area the area of each patch comprising a landscape mosaic.

core.area represents the interior area of the patch, greater than the specified depth-of-edge
distance from the perimeter.

perimeter the perimeter of the patch, including any internal holes in the patch, specified in
meters.

perim.area.ratio

the ratio of the patch perimeter (m) to area (m2).

shape.index the shape complexity, sum of each patches perimeter divided by the square root
of patch area.

frac.dim.index fractal dimension index reflects shape complexity across a range of spatial scales;
approaches 2 times the logarithm of patch perimeter (m) divided by the loga-
rithm of patch area (m2).

core.area.index

quantifies core area as a percentage of patch area.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

References

McGarigal, K., S. A. Cushman, M. C. Neel, and E. Ene. 2002. FRAGSTATS: Spatial Pattern
Analysis Program for Categorical Maps. Computer software program produced by the authors at
the University of Massachusetts, Amherst. Available at the following web site: www.umass.edu/
landeco/research/fragstats/fragstats.html

See Also

ClassStat, ConnCompLabel

http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://www.umass.edu/landeco/research/fragstats/fragstats.html
www.umass.edu/landeco/research/fragstats/fragstats.html
www.umass.edu/landeco/research/fragstats/fragstats.html


pnt.in.poly 33

Examples

#define a simple binary matrix
tmat = { matrix(c( 0,0,0,1,0,0,1,1,0,1,

0,0,1,0,1,0,0,0,0,0,
0,1,NA,1,0,1,0,0,0,1,
1,0,1,1,1,0,1,0,0,1,
0,1,0,1,0,1,0,0,0,1,
0,0,1,0,1,0,0,1,1,0,
1,0,0,1,0,0,1,0,0,1,
0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,0,0,1,
1,1,1,0,0,0,0,0,0,1),nr=10,byrow=TRUE) }

#do the connected component labelling
ccl.mat = ConnCompLabel(tmat)
ccl.mat
image(t(ccl.mat[10:1,]),col=c('grey',rainbow(length(unique(ccl.mat))-1)))

#calculate the patch statistics
ps.data = PatchStat(ccl.mat)
ps.data

pnt.in.poly Point in Polygon

Description

pnt.in.poly works out if 2D points lie within the boundaries of a defined polygon.

Note: Points that lie on the boundaries of the polygon or vertices are assumed to be within the
polygon.

Usage

pnt.in.poly(pnts, poly.pnts)

Arguments

pnts a 2-column matrix or dataframe defining locations of the points of interest

poly.pnts a 2-column matrix or dataframe defining the locations of vertices of the polygon
of interest

Details

The algorithm implements a sum of the angles made between the test point and each pair of points
making up the polygon. The point is interior if the sum is 2pi, otherwise, the point is exterior if the
sum is 0. This works for simple and complex polygons (with holes) given that the hole is defined
with a path made up of edges into and out of the hole.



34 put.data

This sum of angles is not able to consistently assign points that fall on vertices or on the boundary
of the polygon. The algorithm defined here assumes that points falling on a boundary or polygon
vertex are part of the polygon.

Value

A 3-column dataframe where the first 2 columns are the original locations of the points. The third
column (names pip) is a vector of binary values where 0 represents points not with the polygon and
1 within the polygon.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

Examples

#define the points and polygon
pnts = expand.grid(x=seq(1,6,0.1),y=seq(1,6,0.1))
polypnts = cbind(x=c(2,3,3.5,3.5,3,4,5,4,5,5,4,3,3,3,2,2,1,1,1,1,2),

y=c(1,2,2.5,2,2,1,2,3,4,5,4,5,4,3,3,4,5,4,3,2,2))

#plot the polygon and all points to be checked
plot(rbind(polypnts, pnts))
polygon(polypnts,col='#99999990')

#create check which points fall within the polygon
out = pnt.in.poly(pnts,polypnts)
head(out)

#identify points not in the polygon with an X
points(out[which(out$pip==0),1:2],pch='X')

put.data Spatial Join of Points with Raster Grids - replace data

Description

put.data replaces data in raster object of class ’asc’ (this and adehabitat package) at specified lo-
cations.

Note: there is no interpolation done here. The values given replace the values of the raster cell
the point falls into.

Usage

put.data(pts, x)



quick.map 35

Arguments

pts a three-column data frame or matrix with the x and y coordinates of the locations
of interest and the third column being the z values to put in the ascii grid file.

x a raster matrix of class ’asc’ (this and the adehabitat package)

Details

Implements a faster version of ’join.asc’ from the adehabitat package.

NOTE: this assumes all locations are within the extent of the raster map. Values outside the extent
will be given a value of NA.

Value

Returns a raster matrix of class ’asc’ equal in size to input ’x’.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

Examples

#create a simple object of class 'asc'
tasc = as.asc(matrix(1:50,nr=50,nc=50)); print(tasc)
## Not run: image(tasc)

#define some point locations
points = data.frame(x=runif(25,1,50),y=runif(25,1,50),z=50)

#put the new data
tasc = put.data(points,tasc)

#show the data
## Not run: image(tasc)

quick.map Quick Map

Description

quick.map creates and displays an image, identifying the threshold as the background color, and
create the gradient legend in the map.

Usage

quick.map(sdm.asc, threshold, bkgd.col = "grey", cols = heat.colors(100),
zlim = NULL, pnts = NULL, ...)



36 quick.map

Arguments

sdm.asc an object of class ’asc’ (adehabitat package), ’RasterLayer’ (raster package) or
’SpatialGridDataFrame’ (sp package)

threshold to indicate the threshold limit of sdm.asc

bkgd.col to specify the background color

cols a set of 2 or more colors to be used in the image and the gradient legend

zlim to specify the upper an lower limits, which are going to be the labels of the
gradient legend

pnts location information for adding the legend.gradient

... other graphical parameters defined by image() or plot()

Details

An image is created of the map requested. A gradient legend (legend.gradient) will be added if
pnts (the position of the legend) is specified.

Value

Nothing is returned, an image is created.

Author(s)

Lorena Falconi <lorefalconi@gmail.com>

Examples

#create a matrix
tmat = { matrix(c( 0,0,0,1,0,0,1,1,0,1,

0,0,1,0,1,0,0,0,0,0,
0,1,NA,1,0,1,0,0,0,1,
1,0,1,1,1,0,1,0,0,1,
0,1,0,1,0,1,0,0,0,1,
0,0,1,0,1,0,0,1,1,0,
1,0,0,1,0,0,1,0,0,0,
0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,1,1,
1,1,1,0,0,0,0,1,1,1),nr=10,byrow=TRUE) }

#do the connected component labeling
tasc = ConnCompLabel(tmat)

#put in the gradient scale
pnts = cbind(x =c(1.1,1.2,1.2,1.1), y =c(0.9,0.9,0.7,0.7))

# Set the map and gradient leyend colors
tasc.col=colorRampPalette(c("yellow","orange", "red"))(5)

#Create an image with the gradient legend
quick.map(tasc,0.09,bkgd.col = 'darkgrey', cols=tasc.col,



read.asc 37

axes=FALSE, xlim=c(0.0,1.35))

#########################
# Create an image with two colors: below the threshold and
# above the threshold

# The next version of SDM Tools will let you create the legend.gradient
# at a specific side of your image, and the user would not need to set
# the coordinates.

# To create the legend.gradient at the bottom left of your image without
# setting up the coordinates at the image you can do this:

xlim = c(-0.5,1)
ylim = c(0,1)
wid = diff(xlim)*0.05
ht = diff(ylim)*0.1
xvals = c(xlim[1]+wid,xlim[1]+2*wid,xlim[1]+2*wid,xlim[1]+wid)
yvals = c(ylim[1]+ht,ylim[1]+ht,ylim[1]+2*ht,ylim[1]+2*ht)

#Create the points for the legend.gradient
pnts=(cbind(xvals,yvals))

# Set the images colors: above the threshold is black and
# below the threshold is darkgrey.
quick.map(tasc,0.09,bkgd.col = 'darkgrey', cols="black",

axes=FALSE, xlim=c(-0.8, 1))

read.asc ESRI ASCII Raster File Import And Export

Description

read.asc and read.asc.gz reads ESRI ArcInfo ASCII raster file either uncompressed or com-
pressed using gzip.

write.asc and write.asc.gz writes an asc object to a ESRI ArcInfo ASCII raster file. The output
can be either compressed or uncompressed.

These functions are faster methods based on the adehabitat import.asc and export.asc.

write.asc2 and write.asc2.gz are even faster implementations but have less error checking.

image.asc and print.asc are generic methods associated with plotting & summarizing data of
class ’asc’; they were modified from adehabitat package.

Usage

read.asc(file, gz = FALSE)



38 read.asc

read.asc.gz(file)

write.asc(x, file, gz = FALSE)

write.asc.gz(x, file)

write.asc2(x, file, sigdig = 0, gz = FALSE)

write.asc2.gz(x, file, sigdig = 0)

## S3 method for class 'asc'
image(x, col = gray((240:1)/256), clfac = NULL, ...)

## S3 method for class 'asc'
print(x, ...)

Arguments

file a character string representing the filename of the input/output file. The file
extension should always be ’.asc’.

gz defines if the object is or should be compressed using gzip

x an object of class ’asc’ as defined in the adehabitat package

sigdig is the number of significant digits to write when creating the ascii grid file

col for maps of type "numeric", the colors to be used (see help(par))

clfac for maps of type "factor", a character vector giving the names of colors for
each level of the factor (see help(colasc))

... additional arguments to be passed to the generic function image or print

Details

Implements a faster version of import.asc or export.asc from the adehabitat package. In addition,
files can be read in and written to in gzip compressed format.

Generic methods of print and image were modified from adehabitat. Further details of them are
found there.

Value

Returns a raster matrix of the class ’asc’ defined in the adehabitat package with the following
attributes:

xll the x coordinate of the center of the lower left pixel of the map

yll the y coordinate of the center of the lower left pixel of the map

cellsize the size of a pixel on the studied map

type either ’numeric’ or ’factor’

levels if type = ’factor’, the levels of the factor.



Scalebar 39

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

Examples

#create a simple object of class 'asc'
tasc = as.asc(matrix(rep(x=1:10, times=1000),nr=100)); print(tasc)

#write out the raster grid file
write.asc(tasc,'t.raster.asc')
write.asc.gz(tasc,'t.raster.asc') #actually save file name as t.raster.asc.gz

#read in the raster grid files
tasc2 = read.asc('t.raster.asc')
tasc3 = read.asc.gz('t.raster.asc.gz')

#remove the temporary raster
unlink(c('t.raster.asc','t.raster.asc.gz'))

Scalebar Scalebar for Projected Maps

Description

Scalebar adds a distance scalebar onto a projected map. It is not appropriate for geographic pro-
jections.

Usage

Scalebar(x, y, distance, unit = "km", scale = 1, t.cex = 0.8)

Arguments

x the x-axis position for the lower left corner of the bar

y the x-axis position for the lower left corner of the bar

distance the distance for which the scale bar should represent

unit the units to report as the scaling

scale the scaling factor to rescale the distance to a different unit. e.g., if your map is
in m and want the scalebar to be in km, use a scale of 0.01

t.cex the scaling of the font size to be used for the scalebar

Value

nothing is returned, simply a scalebar is added to a plot.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>



40 SigDiff

Examples

#create a simple object of class 'asc'
tasc = as.asc(matrix(1:50,nr=50,nc=50)); print(tasc)

#plot the image
image(tasc,axes=FALSE,ann=FALSE)

#add a distance scalebar
Scalebar(x=5,y=5,distance=20) #show values in km
Scalebar(x=5,y=10,distance=20,unit='m',scale=1000) #show values in meters

SigDiff Identify Regions of Significant Differences

Description

SigDiff computes the significance of the pairwise differences relative to the mean and variance of
all differences between the two input datasets. This is useful for identifying regions of significant
difference between two datasets (e.g., different DEMs (Januchowski et al. 2010) or different species
distribution model predictions (Bateman et al 2010)).

ImageDiff is a wrapper to the image.asc command in adehabitat package that uses the result from
SigDiff to create an image mapping the regions of significant differences (positive and negative).

NOTE: it is assumed the input data are of the same extent and cellsize.

Usage

SigDiff(x, y, pattern = TRUE)

ImageDiff(tasc, sig.levels = c(0.025, 0.975), tcol = terrain.colors(3), ...)

Arguments

x a vector or matrix of data; the matrix can be of can be a raster of class ’asc’
(adehabitat package), ’RasterLayer’ (raster package) or ’SpatialGridDataFrame’
(sp package)

y a vector or matrix of data with the same dimensions and class of ’x’
pattern logical value defining if differences are respective to relative patterning (TRUE)

or absolute values (FALSE)
tasc a matrix of probability values (0 to 1) likely created by SigDiff; The matrix can

be a raster of class ’asc’ (adehabitat package), ’RasterLayer’ (raster package) or
’SpatialGridDataFrame’ (sp package)

sig.levels the significance levels to define significantly above and below. Default settings
represent significance at the 0.05 level

tcol a set of 3 colors for use in the image to represent significantly lower or greater,
and not significant

... other graphical parameters defined by image() or plot()



slope 41

Value

SigDiff returns a vector or matrix of the same dimensions and class of the input representing the
significance of the pairwise difference relative to the mean and variance of all differences between
the two inputs.

ImageDiff returns nothing but creates an image of the areas of significant differences

Author(s)

Stephanie Januchowski <stephierenee@gmail.com>

References

Januchowski, S., Pressey, B., Vanderwal, J. & Edwards, A. (2010) Characterizing errors in topo-
graphic models and estimating the financial costs of accuracy. International Journal of Geographical
Information Science, In Press.

Bateman, B.L., VanDerWal, J., Williams, S.E. & Johnson, C.N. (2010) Inclusion of biotic inter-
actions in species distribution models improves predictions under climate change: the northern
bettong Bettongia tropica, its food resources and a competitor. Journal of Biogeography, In Review.

Examples

#create some simple objects of class 'asc'
tasc = as.asc(matrix(1:50,nr=50,nc=50)); print(tasc)
#modify the asc objects so that they are slightly different
tasc1 = tasc + runif(n = 2500, min = -1, max = 1)
tasc2 = tasc + rnorm(n = 2500, mean = 1, sd = 1)

#create graphical representation
par(mfrow=c(2,2),mar=c(1,1,4,1))
image(tasc1,main='first grid',axes=FALSE)
image(tasc2,main='second grid',axes=FALSE)

#get significant difference by spatial patterning
out = SigDiff(tasc1,tasc2)
ImageDiff(out,main="Pattern Differences",axes=FALSE)

#get significant difference
out = SigDiff(tasc1,tasc2,pattern=FALSE)
ImageDiff(out,main="Absolute Differences",axes=FALSE)
legend('topleft',legend=c('-ve','ns','+ve'),title='significance',

fill=terrain.colors(3),bg='white')

slope Slope and aspect calculations



42 slope

Description

slope and aspect calculates the slope and aspect of raster surfaces of class ’asc’ (SDMTools &
adehabitat packages), ’RasterLayer’ (raster package) or ’SpatialGridDataFrame’ (sp package).

Methods are based on Burrough and McDonell (1998).

Usage

slope(mat, latlon = FALSE)

aspect(mat, latlon = FALSE)

Arguments

mat a matrix of data representing z heights. Matrix can be a raster of class ’asc’
(adehabitat package), ’RasterLayer’ (raster package) or ’SpatialGridDataFrame’
(sp package)

latlon boolean value representing if the data is geographic.

Details

Slope returns values representing the ’rise over run’ with "run" units representing cellsize if latlon=FALSE
or km if latlon=TRUE. This can be changed to percentage (multiply by 100) or to degrees by
ATAN ( output ) * 57.29578.

Aspect returns the direction (0 to 360) with North being 0. Values of -1 are flat areas with no
slope or aspect.

As this method requires information from the surrounding cells, missing data (NAs or edges) are
populated with the value from the ’cell-of-interest’).

Value

an object of the same class as mat.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

References

Burrough, P. A. and McDonell, R.A., 1998. Principles of Geographical Information Systems (Ox-
ford University Press, New York), p. 190.

Examples

#define a simple asc with some slope and direction
tasc = as.asc(matrix(1:50,nr=10,nc=5),yll=75); tasc[,]
slope(tasc)[,] #show the output of slope



wt.mean 43

aspect(tasc)[,] #show the output of the aspect

#define a FLAT simple asc
tasc = as.asc(matrix(10,nr=10,nc=5),yll=75); tasc[,]
slope(tasc)[,] #show the output of slope
aspect(tasc)[,] #show the output of the aspect

wt.mean Weighted mean, variance and standard deviation calculations

Description

wt.mean calculates the mean given a weighting of the values.

wt.var is the unbiased variance of the weighted mean calculation using equations of GNU Scentific
Library (http://www.gnu.org/software/gsl/manual/html_node/Weighted-Samples.htmland.

wt.sd is the standard deviation of the weighted mean calculated as the sqrt of wt.var.

Note: NA data is automatically ommitted from analysis.

Usage

wt.mean(x, wt)

wt.var(x, wt)

wt.sd(x, wt)

Arguments

x is a vector of numerical data.

wt is a vector of equal length to x representing the weights.)

Value

returns a single value from analysis requested.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

http://www.gnu.org/software/gsl/manual/html_node/Weighted-Samples.htmland


44 ZonalStat

Examples

#define simple data
x = 1:25 # set of numbers
wt = runif(25) #some arbitrary weights

#display means & variances (unweighted and then weighted)
mean(x); wt.mean(x,wt)
var(x); wt.var(x,wt)
sd(x); wt.sd(x,wt)

ZonalStat Landscape Zonal Statistics

Description

ZonalStat calculates the statistics of data for specified zones of two matrices of data. The matrix
can be a raster of class ’asc’ (adehabitat package), ’RasterLayer’ (raster package) or ’SpatialGrid-
DataFrame’ (sp package).

Usage

ZonalStat(mat, zones, FUN = "all")

Arguments

mat a matrix of data to be summarized; The matrix can be a raster of class ’asc’
(adehabitat package), ’RasterLayer’ (raster package) or ’SpatialGridDataFrame’
(sp package)

zones a matrix of data with individual patches identified as with ConnCompLabel; The
matrix must be of the same size & extent as mat

FUN a single or vector of functions to be applied to each ’zone’; the default of ’all’
will calculate min, 1st quarter, median, 3rd quarter, max, mean, standard devia-
tion and n

Details

The code summarizes the data for defined zones. Nearly any function can be used for summarizing
the data.

The FUN defined with ’all’ as one of or the only function will append the functions of min, 1st
quarter, median, 3rd quarter, max, mean, standard deviation and n to what is being calculated.



ZonalStat 45

Value

a data.frame listing

zone the unique ID for each zone.

functions... a column for each of the functions identified

The data.frame will have an atribute defining the number of NA values that were excluded from the
analysis.

Author(s)

Jeremy VanDerWal <jjvanderwal@gmail.com>

Examples

#define a simple binary matrix
tmat = { matrix(c( 0,0,0,1,0,0,1,1,0,1,

0,0,1,0,1,0,0,0,0,0,
0,1,NA,1,0,1,0,0,0,1,
1,0,1,1,1,0,1,0,0,1,
0,1,0,1,0,1,0,0,0,1,
0,0,1,0,1,0,0,1,1,0,
1,0,0,1,0,0,1,0,0,1,
0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,0,0,1,
1,1,1,0,0,0,0,0,0,1),nr=10,byrow=TRUE) }

#do the connected component labelling
ccl.mat = ConnCompLabel(tmat)
ccl.mat #this is the zone matrix to be used

#create a random data matrix
data.mat = matrix(runif(100),nr=10,nc=10)
data.mat

#calculate the zonal statistics
zs.data = ZonalStat(data.mat,ccl.mat,FUN='all')
zs.data

#just calculate the sum
zs.data = ZonalStat(data.mat,ccl.mat,FUN='sum')
zs.data

#calculate sum & n & 'all' and show when a function is not defined
zs.data = ZonalStat(data.mat,ccl.mat,

FUN=c('sum','length','not.a.function','all'))
zs.data
attr(zs.data,'excluded NAs') #show how many NAs were omitted from analysis



Index

accuracy, 2, 7, 15, 26, 29, 31
as.asc (asc.from.raster), 4
asc.from.raster, 4
asc.from.sp (asc.from.raster), 4
asc2dataframe, 5
aspect (slope), 41
auc, 3, 7, 15, 26, 29, 31

circular.averaging, 8
ClassStat, 9, 16, 32
COGravity, 12
compare.matrix, 13
confusion.matrix, 3, 7, 14, 26, 29, 31
ConnCompLabel, 11, 15, 32

dataframe2asc (asc2dataframe), 5
destination, 16, 20
distance, 19

extract.data, 20

getXYcoords, 21
grid.area, 22
grid.info, 23
grid.perimeter (grid.area), 22

image.asc (read.asc), 37
ImageDiff (SigDiff), 40
Istat, 24

Kappa, 3, 7, 15, 25, 29, 31

lcmw, 26
legend.gradient, 27, 36

omission, 3, 7, 15, 26, 29, 31
optim.thresh, 30

PatchStat, 11, 16, 31
pnt.in.poly, 33
print.asc (read.asc), 37

prop.correct, 3, 7, 15, 26, 31
prop.correct (omission), 29
put.data, 34

quick.map, 35

raster.from.asc (asc.from.raster), 4
read.asc, 37

Scalebar, 39
sensitivity, 3, 7, 15, 26, 31
sensitivity (omission), 29
SigDiff, 40
slope, 41
sp.from.asc (asc.from.raster), 4
specificity, 3, 7, 15, 26, 31
specificity (omission), 29

vector.averaging (circular.averaging), 8

write.asc (read.asc), 37
write.asc2 (read.asc), 37
wt.mean, 43
wt.sd (wt.mean), 43
wt.var (wt.mean), 43

ZonalStat, 44

46


	accuracy
	asc.from.raster
	asc2dataframe
	auc
	circular.averaging
	ClassStat
	COGravity
	compare.matrix
	confusion.matrix
	ConnCompLabel
	destination
	distance
	extract.data
	getXYcoords
	grid.area
	grid.info
	Istat
	Kappa
	lcmw
	legend.gradient
	omission
	optim.thresh
	PatchStat
	pnt.in.poly
	put.data
	quick.map
	read.asc
	Scalebar
	SigDiff
	slope
	wt.mean
	ZonalStat
	Index

