
Package: SpaDES.project (via r-universe)
October 1, 2024

Type Package

Title Project Templates Using 'SpaDES'

Description Quickly setup a 'SpaDES' project directories and add
modules using templates.

URL https://spades-project.predictiveecology.org/,

https://github.com/PredictiveEcology/SpaDES.project

Date 2024-08-02

Version 0.1.0.9008

Depends R (>= 4.2)

Imports data.table, fs, methods, Require (>= 0.3.1.9082), rprojroot,
rstudioapi, tools, utils

Suggests covr, crayon, digest, ellipsis, filelock, geodata, gert, gh,
gitcreds, googledrive, httr, igraph, knitr, pkgload, raster,
remotes, reproducible, rmarkdown, sf, SpaDES.config,
SpaDES.core, terra, testthat (>= 3.0.0), usethis, visNetwork,
waldo, withr

Remotes PredictiveEcology/SpaDES.config@development,
PredictiveEcology/SpaDES.core@development, rspatial/geodata

Encoding UTF-8

Language en-CA

License GPL-3

VignetteBuilder knitr, rmarkdown

BugReports https://github.com/PredictiveEcology/SpaDES.project/issues

ByteCompile yes

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

Config/testthat/edition 3

1

https://spades-project.predictiveecology.org/
https://github.com/PredictiveEcology/SpaDES.project
https://github.com/PredictiveEcology/SpaDES.project/issues


2 SpaDES.project-package

Collate 'SpaDES.projectOptions.R' 'environment.R' 'fileEdit.R'
'imports.R' 'getModule.R' 'helpers.R' 'listModules.R'
'makeDESCRIPTION.R' 'packages.R' 'paths2.R' 'pkgload2.R'
'setupProject.R' 'spades-project-package.R' 'txt.R' 'zzz.R'

Repository https://predictiveecology.r-universe.dev

RemoteUrl https://github.com/PredictiveEcology/SpaDES.project

RemoteRef development

RemoteSha c94074508fc9a3ea28459f7ffe666659c83d1815

Contents

SpaDES.project-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
.libPathDefault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
.teardownProject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
findProjectPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
getGithubFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
getModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
listModules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
makeDESCRIPTIONproject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
packagesInModules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
pkgload2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
setProjPkgDir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
setupPaths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
setupProject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
spadesProjectOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Index 30

SpaDES.project-package

Project templates using SpaDES

Description

Quickly setup ’SpaDES’ project directories and add modules using templates.



.libPathDefault 3

Author(s)

Maintainer: Eliot J B McIntire <eliot.mcintire@nrcan-rncan.gc.ca> (ORCID)

Other contributors:

• Alex M Chubaty <achubaty@for-cast.ca> (ORCID) [contributor]

• Ian Eddy <ian.eddy@nrcan-rncan.gc.ca> (ORCID) [contributor]

• Ceres Barros <ceres.barros@nrcan-rncan.gc.ca> [contributor]

See Also

Useful links:

• https://spades-project.predictiveecology.org/

• https://github.com/PredictiveEcology/SpaDES.project

• Report bugs at https://github.com/PredictiveEcology/SpaDES.project/issues

.libPathDefault SpaDES.project default .libPaths() directory

Description

For a given name, this will return the default library for packages.

Usage

.libPathDefault(name)

Arguments

name A text string. When used in setupProject, this is the projectName

Value

A path where the packages will be installed.

https://orcid.org/0000-0002-6914-8316
https://orcid.org/0000-0001-7146-8135
https://orcid.org/0000-0001-7397-2116
https://spades-project.predictiveecology.org/
https://github.com/PredictiveEcology/SpaDES.project
https://github.com/PredictiveEcology/SpaDES.project/issues


4 findProjectPath

.teardownProject Helpers for cleanup of global state in examples and tests

Description

1. remove project library directory created using setupProject();

2. remove project paths created using setupProject;

3. restore original library paths.

Usage

.teardownProject(prjPaths, origLibPaths)

Arguments

prjPaths character vector of paths to be removed

origLibPaths character string giving the original library path to be restored

Value

NULL. Invoked for its side effects.

Note

not intended to be called by users

findProjectPath Find the project root directory

Description

Searches from current working directory for and Rstudio project file or git repository, falling back
on using the current working directory.

Usage

findProjectPath()

findProjectName()

Value

findProjectPath returns an absolute path; findProjectName returns the basename of the path.



getGithubFile 5

getGithubFile A simple way to get a Github file, authenticated

Description

This can be used within e.g., the options or params arguments for setupProject to get a ready-
made file for a project.

Usage

getGithubFile(
gitRepoFile,
overwrite = FALSE,
destDir = ".",
verbose = getOption("Require.verbose")

)

Arguments

gitRepoFile Character string that follows the convention GitAccount/GitRepo@Branch/File,
if @Branch is omitted, then it will be assumed to be master or main.

overwrite A logical vector of same length (or length 1) gitRepo. If TRUE, then the down-
load will delete any existing folder with the same name as the repository pro-
vided in gitRepo

destDir A directory to put the file that is to be downloaded.

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

See Also

getModule

Examples

filename <- getGithubFile("PredictiveEcology/LandWeb@development/01b-options.R",
destDir = Require::tempdir2())



6 getModule

getModule Simple function to download a SpaDES module as GitHub repository

Description

Simple function to download a SpaDES module as GitHub repository

Usage

getModule(
modules,
modulePath,
overwrite = FALSE,
verbose = getOption("Require.verbose", 1L)

)

Arguments

modules Character vector of one or more github repositories as character strings that con-
tain SpaDES modules. These should be presented in the standard R way, with
account/repository@branch. If account is omitted, then "PredictiveEcology
will be assumed.

modulePath A local path in which to place the full module, within a subfolder ... i.e., the
source code will be downloaded to here: file.path(modulePath, repository).
If omitted, and options(spades.modulePath) is set, it will use getOption("spades.modulePath"),
otherwise it will use ".".

overwrite A logical vector of same length (or length 1) gitRepo. If TRUE, then the down-
load will delete any existing folder with the same name as the repository pro-
vided in gitRepo

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

See Also

getGithubFile



listModules 7

listModules Tools for examining modules on known repositories

Description

When exploring existing modules, these tools help identify and navigate modules and their interde-
pendencies.

Usage

listModules(
keywords,
accounts,
includeForks = FALSE,
includeArchived = FALSE,
excludeStale = TRUE,
omit = c("fireSense_dataPrepFitRas"),
purge = FALSE,
returnList = FALSE,
verbose = getOption("Require.verbose", 1L)

)

moduleDependencies(
modules,
modulePath = getOption("reproducible.modulePath", ".")

)

moduleDependenciesToGraph(md)

PlotModuleGraph(graph)

Arguments

keywords A vector of character strings that will be used as keywords for identify modules

accounts A vector of character strings identifying GitHub accounts e.g., PredictiveEcology
to search.

includeForks Should the returned list include repositories that are forks (i.e., not the original
repository). Default is FALSE.

includeArchived

Should the returned list include repositories that are archived (i.e., developer has
retired them). Default is FALSE.

excludeStale Logical or date. If TRUE, then only repositories that are still active (commits in
the past 2 years) are returned. If a date (e.g., "2021-01-01"), then only reposito-
ries with commits since that date are returned. Default is TRUE, i.e., only include
active in past 2 years.

omit A vector of character strings of repositories to ignore.



8 makeDESCRIPTIONproject

purge There is some internal caching that occurs. Setting this to TRUE will remove any
cached data that is part of the requested accounts and keywords.

returnList Should the function return a named list where the name is the account and the
elements are the repositories selected. Default FALSE, i.e., return a character
vector. This is included to allow a user to maintain backwards compatibility by
setting returnList = TRUE

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

modules Either a character vector of local module names, or a named list of character
strings of short module names (i.e., the folder paths in modulePath).

modulePath A character string indicating the path where the modules are located.

md A data.table with columns from and to, showing relationships of objects in
modules. Likely from moduleDependencies.

graph An igraph object to plot. Likely returned by moduleDependenciesToGraph.

Value

listModules returns a character vector of paste0(account, "/", Repository) for all SpaDES modules
in the given repositories with the accounts and keywords provided.

See Also

metadataInModules() helps to see different metadata elements in a folder of modules.

Examples

listModules(accounts = "PredictiveEcology", "none")

makeDESCRIPTIONproject

Make DESCRIPTION file(s) from SpaDES module metadata

Description

Make DESCRIPTION file(s) from SpaDES module metadata



makeDESCRIPTIONproject 9

Usage

makeDESCRIPTIONproject(
modules,
modulePath,
projectPath = ".",
singleDESCRIPTION = TRUE,
package = "Project",
title = "Project",
description = "Project",
version = "1.0.0",
authors = Sys.info()["user"],
write = TRUE,
verbose = getOption("Require.verbose")

)

makeDESCRIPTION(
modules,
modulePath,
projectPath = ".",
singleDESCRIPTION = FALSE,
package,
title,
date,
description,
version,
authors,
write = TRUE,
verbose,
metadataList,
...

)

Arguments

modules A character vector of module names

modulePath Character. The path with modules, usually modulePath() or paths$modulePath

projectPath Character. Only used if singleDESCRIPTION = TRUE

singleDESCRIPTION

Logical. If TRUE, there be only one DESCRIPTION file written for all mod-
ules, i.e., all reqdPkgs will be trimmed for redundancies and put into the single
project-level DESCRIPTION file.

package The name inserted into the "Package" entry in DESCRIPTION

title The string inserted into the "Title" entry in DESCRIPTION

description The string inserted into the "Description" entry in DESCRIPTION

version The string inserted into the "Version" entry in DESCRIPTION

authors The string inserted into the "Authors" entry in DESCRIPTION



10 packagesInModules

write Logical. If TRUE, then it will write the DESCRIPTION file either in the modulePath
(if singleDESCRIPTION = FALSE) or projectPath (if singleDESCRIPTION =
TRUE)

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

date Date to enter into DESCRIPTION file. Defaults to Sys.Date()

metadataList The parsed source code from a module. Must include defineModule metadata.

... Currently not used.

packagesInModules Extract element from SpaDES module metadata

Description

Parses module code, looking for the metadataItem (default = "reqdPkgs") element in the defineModule
function.

Usage

packagesInModules(modules, modulePath = getOption("spades.modulePath"))

metadataInModules(
modules,
metadataItem = "reqdPkgs",
modulePath = getOption("spades.modulePath"),
needUnlist,
verbose = getOption("Require.verbose", 1L)

)

Arguments

modules character vector of module names

modulePath path to directory containing the module(s) named in modules

metadataItem character identifying the metadata field to extract

needUnlist logical indicating whether to unlist the resulting metadata look up

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).



pkgload2 11

Value

A character vector of sorted, unique packages that are identified in all named modules, or if modules
is omitted, then all modules in modulePath.

pkgload2 An alternative to pkgload::load_all with caching

Description

pkgload::load_all does not automatically deal with dependency chains: the user must manually
load the dependency chain in order with separate calls to pkgload::load_all. Also, it does not
use caching. This function allows nested caching for a sequence of packages that depend on one
another. For example, if a user has 3 packages that have dependency chain: A is a dependency of
B which is a dependency of C. If a change happens in C, then pkgload::load_all will only be called
on C. If a change happens in A, then pkgload::load_all will be called on A, then B, then C.

Usage

pkgload2(
depsPaths = file.path("~/GitHub", c("reproducible", "SpaDES.core", "LandR")),
envir = parent.frame()

)

Arguments

depsPaths A character vector of paths to packages that need loading, or list of these. Each
vector should be the load order sequence, based on the package dependencies,
i.e., the first element in the vector should be a dependency of the second element
in the vector etc. For packages that do not depend on each other, use separate
list elements.

envir An environment where an object called .prevDigs that will be placed and used
as a cache comparison.

Value

This is called for its side effects, which are 2: pkgload::load_all on the packages that need it, and
an object, .prevDigs that is assigned to envir.



12 setupPaths

setProjPkgDir Set the package directory for a project

Description

This function will create a sub-folder of the lib.loc directory that is based on the R version and
the platform, as per the standard R package directory naming convention

Usage

setProjPkgDir(lib.loc = "packages", verbose = getOption("Require.verbose", 1L))

Arguments

lib.loc The folder for installing packages inside of

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

setupPaths Individual setup* functions that are contained within setupProject

Description

These functions will allow more user control, though in most circumstances, it should be unneces-
sary to call them directly.

Usage

setupPaths(
name,
paths,
inProject,
standAlone = TRUE,
libPaths = NULL,
updateRprofile = getOption("SpaDES.project.updateRprofile", TRUE),
Restart = getOption("SpaDES.project.Restart", FALSE),
overwrite = FALSE,
envir = parent.frame(),
useGit = getOption("SpaDES.project.useGit", FALSE),
verbose = getOption("Require.verbose", 1L),
dots,
defaultDots,



setupPaths 13

...
)

setupFunctions(
functions,
name,
sideEffects,
paths,
overwrite = FALSE,
envir = parent.frame(),
verbose = getOption("Require.verbose", 1L),
dots,
defaultDots,
...

)

setupSideEffects(
name,
sideEffects,
paths,
times,
overwrite = FALSE,
envir = parent.frame(),
verbose = getOption("Require.verbose", 1L),
dots,
defaultDots,
...

)

setupOptions(
name,
options,
paths,
times,
overwrite = FALSE,
envir = parent.frame(),
verbose = getOption("Require.verbose", 1L),
dots,
defaultDots,
useGit = getOption("SpaDES.project.useGit", FALSE),
updateRprofile = getOption("SpaDES.project.updateRprofile", TRUE),
...

)

setupModules(
name,
paths,
modules,



14 setupPaths

inProject,
useGit = getOption("SpaDES.project.useGit", FALSE),
overwrite = FALSE,
envir = parent.frame(),
gitUserName,
verbose = getOption("Require.verbose", 1L),
dots,
defaultDots,
updateRprofile = getOption("SpaDES.project.updateRprofile", TRUE),
...

)

setupPackages(
packages,
modulePackages = list(),
require = list(),
paths,
libPaths,
setLinuxBinaryRepo = TRUE,
standAlone,
envir = parent.frame(),
verbose = getOption("Require.verbose"),
dots,
defaultDots,
...

)

setupParams(
name,
params,
paths,
modules,
times,
options,
overwrite = FALSE,
envir = parent.frame(),
verbose = getOption("Require.verbose", 1L),
dots,
defaultDots,
...

)

setupGitIgnore(
paths,
gitignore = getOption("SpaDES.project.gitignore", TRUE),
verbose

)



setupPaths 15

setupStudyArea(
studyArea,
paths,
envir,
verbose = getOption("Require.verbose", 1L)

)

setupFiles(
files,
paths,
envir = parent.frame(),
verbose = getOption("Require.verbose", 1L)

)

Arguments

name Optional. If supplied, the name of the project. If not supplied, an attempt will
be made to extract the name from the paths[["projectPath"]]. If this is a
GitHub project, then it should indicate the full Github repository and branch
name, e.g., "PredictiveEcology/WBI_forecasts@ChubatyPubNum12"

paths a list with named elements, specifically, modulePath, projectPath, packagePath
and all others that are in SpaDES.core::setPaths() (i.e., inputPath, outputPath,
scratchPath, cachePath, rasterTmpDir). Each of these has a sensible de-
fault, which will be overridden but any user supplied values. See setup.

inProject A logical. If TRUE, then the current directory is inside the paths[["projectPath"]].

standAlone A logical. Passed to Require::standAlone. This keeps all packages installed
in a project-level library, if TRUE. Default is TRUE.

libPaths Deprecated. Use paths = list(packagePath = ...).

updateRprofile Logical. Should the paths$packagePath be set in the .Rprofile file for this
project. Note: if paths$packagePath is within the tempdir(), then there will
be a warning, indicating this won’t persist. If the user is using Rstudio and
the paths$projectPath is not the root of the current Rstudio project, then a
warning will be given, indicating the .Rprofile may not be read upon restart.

Restart Logical or character. If either TRUE or a character, and if the projectPath is
not the current path, and the session is in RStudio and interactive, it will try to
restart Rstudio in the projectPath with a new Rstudio project. If character, it
should represent the filename of the script that contains the setupProject call
that should be copied to the new folder and opened. If TRUE, it will use the
active file as the one that should be copied to the new projectPath and opened in
the Rstudio project. If successful, this will create an RStudio Project file (and
.Rproj.user folder), restart with a new Rstudio session with that new project and
with a root path (i.e. working directory) set to projectPath. Default is FALSE,
and no RStudio Project is created.

overwrite Logical vector or character vector, however, only getModule will respond to a
vector of values. If length-one TRUE, then all files that were previously down-
loaded will be overwritten throughout the sequence of setupProject. If a vec-
tor of logical or character, these will be passed to getModule: only the named



16 setupPaths

modules will be overwritten or the logical vector of the modules. NOTE: if a
vector, no other file specified anywhere in setupProject will be overwritten
except a module that/those names, because only setupModules is currently re-
sponsive to a vector. To have fine grained control, a user can just manually delete
a file, then rerun.

envir An environment within which to look for objects. If called alone, the function
should use its own internal environment. If called from another function, e.g.,
setupProject, then the envir should be the internal transient environment of
that function.

useGit (if not FALSE, then experimental still). There are two levels at which a project
can use GitHub, either the projectPath and/or the modules. Any given project
can have one or the other, or both of these under git control. If "both", then
this function will assume that git submodules will be used for the modules.
A logical or "sub" for submodule. If "sub", then this function will attempt
to clone the identified modules as git submodules. This will only work if the
projectPath is a git repository. If the project is already a git repository be-
cause the user has set that up externally to this function call, then this func-
tion will add the modules as git submodules. If it is not already, it will use
git clone for each module. After git clone or submodule add are run, it will
run git checkout for the named branch and then git pull to get and change
branch for each module, according to its specification in modules. If FALSE,
this function will download modules with getModules. NOTE: CREATING A
GIT REPOSITORY AT THE PROJECT LEVEL AND SETTING MODULES
AS GIT SUBMODULES IS EXPERIMENTAL. IT IS FINE IF THE PROJECT
HAS BEEN MANUALLY SET UP TO BE A GIT REPOSITORY WITH SUB-
MODULES: THIS FUNCTION WILL ONLY EVALUTE PATHS. This can be
set with the option(SpaDES.project.useGit = xxx).

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

dots Any other named objects passed as a list a user might want for other elements.

defaultDots A named list of any arbitrary R objects. These can be supplied to give default
values to objects that are otherwise passed in with the ..., i.e., not specifically
named for these setup* functions. If named objects are supplied as top-level
arguments, then the defaultDots will be overridden. This can be particularly
useful if the arguments passed to ... do not always exist, but rely on external
e.g., batch processing to optionally fill them. See examples.

... further named arguments that acts like objects, but a different way to specify
them. These can be anything. The general use case is to create the objects that
are would be passed to SpaDES.core::simInit, or SpaDES.core::simInitAndSpades,
(e.g. studyAreaName or objects) or additional objects to be passed to the sim-
ulation (in older versions of SpaDES.core, these were passed as a named list to
the objects argument). Order matters. These are sequentially evaluated, and
also any arguments that are specified before the named arguments e.g., name,
paths, will be evaluated prior to any of the named arguments, i.e., "at the start"



setupPaths 17

of the setupProject. If placed after the first named argument, then they will
be evaluated at the end of the setupProject, so can access all the packages,
objects, etc.

functions A set of function definitions to be used within setupProject. These will
be returned as a list element. If function definitions require non-base pack-
ages, prefix the function call with the package e.g., terra::rast. When using
setupProject, the functions argument is evaluated after paths, so it cannot
be used to define functions that help specify paths.

sideEffects Optional. This can be an expression or one or more file names or a code chunk
surrounded by {...}. If a non-text file name is specified (e.g., not .txt or .R
currently), these files will simply be downloaded, using their relative path as
specified in the github notation. They will be downloaded or accessed locally at
that relative path. If these file names represent scripts (*.txt or .R), this/these will
be parsed and evaluated, but nothing is returned (i.e., any assigned objects are
not returned). This is intended to be used for operations like cloud authentication
or configuration functions that are run for their side effects only.

times Optional. This will be returned if supplied; if supplied, the values can be used in
e.g., params, e.g., params = list(mod = list(startTime = times$start)).
See help for SpaDES.core::simInit.

options Optional. Either a named list to be passed to options or a character vector indi-
cating one or more file(s) to source, in the order provided. These will be parsed
locally (not the .GlobalEnv), so they will not create globally accessible objects.
NOTE: options is run 2x within setupProject, once before setupPaths and
once after setupPackages. This occurs because many packages use options for
their behaviour (need them set before e.g., Require::require is run; but many
packages also change options at startup. See details. See setup.

modules a character vector of modules to pass to getModule. These should be one
of: simple name (e.g., fireSense) which will be searched for locally in the
paths[["modulePath"]]; or a GitHub repo with branch (GitHubAccount/Repo@branch
e.g., "PredictiveEcology/Biomass_core@development"); or a character vec-
tor that identifies one or more module folders (local or GitHub) (not the module
.R script). If the entire project is a git repository, then it will not try to re-get
these modules; instead it will rely on the user managing their git status outside
of this function. See setup.

gitUserName The GitHub account name. Used with git clone git@github.com:gitHuserName/name
packages Optional. A vector of packages that must exist in the libPaths. This will be

passed to Require::Install, i.e., these will be installed, but not attached to
the search path. See also the require argument. To force skip of package
installation (without assessing modules), set packages = NULL

modulePackages A named list, where names are the module names, and the elements of the list
are packages in a form that Require::Require accepts.

require Optional. A character vector of packages to install and attach (with Require::Require).
These will be installed and attached at the start of setupProject so that a user
can use these during setupProject. See setup

setLinuxBinaryRepo

Logical. Should the binary RStudio Package Manager be used on Linux (ig-
nored if Windows)



18 setupPaths

params Optional. Similar to options, however, this named list will be returned, i.e.,
there are no side effects. See setup.

gitignore Logical. Only has an effect if the paths$projectPath is a git repositories with-
out submodules. This case is ambiguous what a user wants. If TRUE, the default,
then paths$modulePath will be added to the .gitignore file. Can be controled
with options(SpadES.project.gitignore = ...).

studyArea Optional. If a list, it will be passed to geodata::gadm. To specify a country
other than the default "CAN", the list must have a named element, "country".
All other named elements will be passed to gadm. 2 additional named elements
can be passed for convenience, subregion = "...", which will be grepped with
the column NAME_1, and epsg = "...", so a user can pass an epsg.io code to
reproject the studyArea. See examples.

files A vector or list of files to parse. These can be remote github.com files.

Details

setPaths will fill in any paths that are not explicitly supplied by the user as a named list. These
paths that can be set are: projectPath, packagePath, cachePath, inputPath, modulePath,
outputPath, rasterPath, scratchPath, terraPath. These are grouped thematically into three
groups of paths: projectPath and packagePath affect the project, regardless of whether a user
uses SpaDES modules. cachePath, inputPath, outputPath and modulePath are all used by
SpaDES within module contexts. scratchPath, rasterPath and terraPath are all "temporary"
or "scratch" directories.

setupFunctions will source the functions supplied, with a parent environment being the internal
temporary environment of the setupProject, i.e., they will have access to all the objects in the
call.

Most arguments in the family of setup* functions are run sequentially, even within the argument.
Since most arguments take lists, the user can set values at a first value of a list, then use it in
calculation of the 2nd value and so on. See examples. This "sequential" evaluation occurs in
the ..., setupSideEffects, setupOptions, setupParams (this does not work for setupPaths)
can handle sequentially specified values, meaning a user can first create a list of default options,
then a list of user-desired options that may or may not replace individual values. This can create
hierarchies, based on order.

setupOptions can handle sequentially specified values, meaning a user can first create a list of
default options, then a list of user-desired options that may or may not replace individual values.
Thus final values will be based on the order that they are provided.

setupModules will download all modules do not yet exist locally. The current test for "exists
locally" is simply whether the directory exists. If a user wants to update the module, overwrite =
TRUE must be set, or else the user can remove the folder manually.

setupPackages will read the modules’ metadata reqdPkgs element. It will combine these with any
packages passed manually by the user to packages, and pass all these packages to Require::Install(...).

setupGitIgnore will add.

setupStudyArea only uses inputPath within its paths argument, which will be passed to path
argument of gadm. User can pass any named list element that matches the columns in the sf object,
including e.g., NAME_1 and, if level = 2, is specified, then NAME_2.



setupPaths 19

setupStudyArea(list(NAME_1 = "Alberta", "NAME_2" = "Division No. 17", level = 2))

setupFiles is a convenience function intended for interactive use to verify the files being parsed.
This is similar to parse, but each element must be a named list or a named object, such as a function.
It uses the same specification for https://github.com files as setupProject, i.e., using @ for
branch.

setupFiles("PredictiveEcology/PredictiveEcology.org@main/tutos/castorExample/params.R")

Value

setupPaths returns a list of paths that are created. projectPath will be assumed to be the base
of other non-temporary and non-R-library paths. This means that all paths that are directly used by
simInit are assumed to be relative to the projectPath. If a user chooses to specify absolute paths,
then they will be returned as is. It is also called for its side effect which is to call setPaths, with
each of these paths as an argument. See table for details. If a user supplies extra paths not useable
by SpaDES.core::simInit, these will added as an attribute ("extraPaths") to the paths element
in the returned object. These will still exist directly in the returned list if a user uses setupPaths
directly, but these will not be returned with setupProject because setupProject is intended to
be used with SpaDES.core::simInit. In addition, three paths will be added to this same attribute
automatically: projectPath, packagePath, and .prevLibPaths which is the previous value for
.libPaths() before changing to packagePath.

setupFunctions returns NULL. All functions will be placed in envir.

setupSideEffects is run for its side effects (e.g., web authentication, custom package options that
cannot use base::options), with deliberately nothing returned to user. This, like other parts of this
function, attempts to prevent unwanted outcomes that occur when a user uses e.g., source without
being very careful about what and where the objects are sourced to.

setupOptions is run for its side effects, namely, changes to the options(). The list of modified
options will be added as an attribute (attr(out, "projectOptions")), e.g., so they can be "unset"
by user later.

setupModules is run for its side effects, i.e., downloads modules and puts them into the paths[["modulePath"]].
It will return a named list, where the names are the full module names and the list elemen.ts are the
R packages that the module depends on (reqsPkgs)

setupPackages is run for its side effects, i.e., installing packages to paths[["packagePath"]].

setupParams prepares a named list of named lists, suitable to be passed to the params argument of
simInit.

setupGitIgnore is run for its side effects, i.e., adding either paths$packagePath and/or paths$modulePath
to the .gitignore file. It will check whether packagePath is located inside the paths$projectPath
and will add this folder to the .gitignore if TRUE. If the project is a git repository with git sub-
modules, then it will add nothing else. If the project is a git repository without git submodules, then
the paths$modulePath will be added to the .gitignore file. It is assumed that these modules are
used in a read only manner.

setupStudyArea will return an sf class object coming from geodata::gadm, with subregion spec-
ification as described in the studyArea argument.fsu

setupFiles a named list with each element that was parsed.

https://github.com


20 setupPaths

Paths

Path Default if not supplied by user Effects
Project Level Paths

projectPath if getwd() is name, then just getwd; if not file.path(getwd(), name) If current project is not this project and using Rstudio, then the current project will close and a new project will open in the same Rstudio session, unless Restart = FALSE
packagePath file.path(tools::R_user_dir("data"), name, "packages", version$platform, substr(getRversion(), 1, 3)) appends this path to .libPaths(packagePath), unless standAlone = TRUE, in which case, it will set .libPaths(packagePath, include.site = FALSE) to this path
—— ———– —–

Module Level Paths
cachePath file.path(projectPath, "cache") options(reproducible.cachePath = cachePath)
inputPath file.path(projectPath, "inputs") options(spades.inputPath = inputPath)
modulePath file.path(projectPath, "modules") options(spades.inputPath = outputPath)
outputPath file.path(projectPath, "outputs") options(spades.inputPath = modulePath)
—— ———– —–

Temporary Paths
scratchPath file.path(tempdir(), name)
rasterPath file.path(scratchPath, "raster") sets (rasterOptions(tmpdir = rasterPath))
terraPath file.path(scratchPath, "terra") sets (terraOptions(tempdir = terraPath))
—— ———– —–

Other Paths
logPath file.path(outputPath(sim), "log") sets options("spades.logPath") accessible by logPath(sim)
tilePath Not implemented yet Not implemented yet

Examples

## simplest case; just creates folders
out <- setupProject(

paths = list(projectPath = ".") #
)
# specifying functions argument, with a local file and a definition here
tf <- tempfile(fileext = ".R")
fnDefs <- c("fn <- function(x) x\n",

"fn2 <- function(x) x\n",
"fn3 <- function(x) terra::rast(x)")

cat(text = fnDefs, file = tf)
funHere <- function(y) y
out <- setupProject(functions = list(a = function(x) return(x),

tf,
funHere = funHere), # have to name it

# now use the functions when creating objects
drr = 1,
b = a(drr),
q = funHere(22),
ddd = fn3(terra::ext(0,b,0,b)))



setupProject 21

setupProject Sets up a new or existing SpaDES project

Description

setupProject calls a sequence of functions in this order: setupOptions (first time), setupPaths,
setupRestart, setupFunctions, setupModules, setupPackages, setupSideEffects, setupOptions
(second time), setupParams, and setupGitIgnore.

This sequence will create folder structures, install missing packages from those listed in either
the packages, require arguments or in the modules reqdPkgs fields, load packages (only those
in the require argument), set options, download or confirm the existence of modules. It will
also return elements that can be passed directly to simInit or simInitAndSpades, specifically,
modules, params, paths, times, and any named elements passed to .... This function will also ,
if desired, change the .Rprofile file for this project so that every time the project is opened, it has a
specific .libPaths().

There are a number of convenience elements described in the section below. See Details. Because
of this sequence, users can take advantage of settings (i.e., objects) that happen (are created) before
others. For example, users can set paths then use the paths list to set options that will can
update/change paths, or set times and use the times list for certain entries in params.

Usage

setupProject(
name,
paths,
modules,
packages,
times,
options,
params,
sideEffects,
functions,
config,
require = NULL,
studyArea = NULL,
Restart = getOption("SpaDES.project.Restart"),
useGit = getOption("SpaDES.project.useGit"),
setLinuxBinaryRepo = getOption("SpaDES.project.setLinuxBinaryRepo"),
standAlone = getOption("SpaDES.project.standAlone"),
libPaths = NULL,
updateRprofile = getOption("SpaDES.project.updateRprofile"),
overwrite = getOption("SpaDES.project.overwrite"),
verbose = getOption("Require.verbose", 1L),
defaultDots,
envir = parent.frame(),
dots,



22 setupProject

...
)

Arguments

name Optional. If supplied, the name of the project. If not supplied, an attempt will
be made to extract the name from the paths[["projectPath"]]. If this is a
GitHub project, then it should indicate the full Github repository and branch
name, e.g., "PredictiveEcology/WBI_forecasts@ChubatyPubNum12"

paths a list with named elements, specifically, modulePath, projectPath, packagePath
and all others that are in SpaDES.core::setPaths() (i.e., inputPath, outputPath,
scratchPath, cachePath, rasterTmpDir). Each of these has a sensible de-
fault, which will be overridden but any user supplied values. See setup.

modules a character vector of modules to pass to getModule. These should be one
of: simple name (e.g., fireSense) which will be searched for locally in the
paths[["modulePath"]]; or a GitHub repo with branch (GitHubAccount/Repo@branch
e.g., "PredictiveEcology/Biomass_core@development"); or a character vec-
tor that identifies one or more module folders (local or GitHub) (not the module
.R script). If the entire project is a git repository, then it will not try to re-get
these modules; instead it will rely on the user managing their git status outside
of this function. See setup.

packages Optional. A vector of packages that must exist in the libPaths. This will be
passed to Require::Install, i.e., these will be installed, but not attached to
the search path. See also the require argument. To force skip of package
installation (without assessing modules), set packages = NULL

times Optional. This will be returned if supplied; if supplied, the values can be used in
e.g., params, e.g., params = list(mod = list(startTime = times$start)).
See help for SpaDES.core::simInit.

options Optional. Either a named list to be passed to options or a character vector indi-
cating one or more file(s) to source, in the order provided. These will be parsed
locally (not the .GlobalEnv), so they will not create globally accessible objects.
NOTE: options is run 2x within setupProject, once before setupPaths and
once after setupPackages. This occurs because many packages use options for
their behaviour (need them set before e.g., Require::require is run; but many
packages also change options at startup. See details. See setup.

params Optional. Similar to options, however, this named list will be returned, i.e.,
there are no side effects. See setup.

sideEffects Optional. This can be an expression or one or more file names or a code chunk
surrounded by {...}. If a non-text file name is specified (e.g., not .txt or .R
currently), these files will simply be downloaded, using their relative path as
specified in the github notation. They will be downloaded or accessed locally at
that relative path. If these file names represent scripts (*.txt or .R), this/these will
be parsed and evaluated, but nothing is returned (i.e., any assigned objects are
not returned). This is intended to be used for operations like cloud authentication
or configuration functions that are run for their side effects only.



setupProject 23

functions A set of function definitions to be used within setupProject. These will
be returned as a list element. If function definitions require non-base pack-
ages, prefix the function call with the package e.g., terra::rast. When using
setupProject, the functions argument is evaluated after paths, so it cannot
be used to define functions that help specify paths.

config Still experimental linkage to the SpaDES.config package. Currently not work-
ing.

require Optional. A character vector of packages to install and attach (with Require::Require).
These will be installed and attached at the start of setupProject so that a user
can use these during setupProject. See setup

studyArea Optional. If a list, it will be passed to geodata::gadm. To specify a country
other than the default "CAN", the list must have a named element, "country".
All other named elements will be passed to gadm. 2 additional named elements
can be passed for convenience, subregion = "...", which will be grepped with
the column NAME_1, and epsg = "...", so a user can pass an epsg.io code to
reproject the studyArea. See examples.

Restart Logical or character. If either TRUE or a character, and if the projectPath is
not the current path, and the session is in RStudio and interactive, it will try to
restart Rstudio in the projectPath with a new Rstudio project. If character, it
should represent the filename of the script that contains the setupProject call
that should be copied to the new folder and opened. If TRUE, it will use the
active file as the one that should be copied to the new projectPath and opened in
the Rstudio project. If successful, this will create an RStudio Project file (and
.Rproj.user folder), restart with a new Rstudio session with that new project and
with a root path (i.e. working directory) set to projectPath. Default is FALSE,
and no RStudio Project is created.

useGit (if not FALSE, then experimental still). There are two levels at which a project
can use GitHub, either the projectPath and/or the modules. Any given project
can have one or the other, or both of these under git control. If "both", then
this function will assume that git submodules will be used for the modules.
A logical or "sub" for submodule. If "sub", then this function will attempt
to clone the identified modules as git submodules. This will only work if the
projectPath is a git repository. If the project is already a git repository be-
cause the user has set that up externally to this function call, then this func-
tion will add the modules as git submodules. If it is not already, it will use
git clone for each module. After git clone or submodule add are run, it will
run git checkout for the named branch and then git pull to get and change
branch for each module, according to its specification in modules. If FALSE,
this function will download modules with getModules. NOTE: CREATING A
GIT REPOSITORY AT THE PROJECT LEVEL AND SETTING MODULES
AS GIT SUBMODULES IS EXPERIMENTAL. IT IS FINE IF THE PROJECT
HAS BEEN MANUALLY SET UP TO BE A GIT REPOSITORY WITH SUB-
MODULES: THIS FUNCTION WILL ONLY EVALUTE PATHS. This can be
set with the option(SpaDES.project.useGit = xxx).

setLinuxBinaryRepo

Logical. Should the binary RStudio Package Manager be used on Linux (ig-
nored if Windows)



24 setupProject

standAlone A logical. Passed to Require::standAlone. This keeps all packages installed
in a project-level library, if TRUE. Default is TRUE.

libPaths Deprecated. Use paths = list(packagePath = ...).

updateRprofile Logical. Should the paths$packagePath be set in the .Rprofile file for this
project. Note: if paths$packagePath is within the tempdir(), then there will
be a warning, indicating this won’t persist. If the user is using Rstudio and
the paths$projectPath is not the root of the current Rstudio project, then a
warning will be given, indicating the .Rprofile may not be read upon restart.

overwrite Logical vector or character vector, however, only getModule will respond to a
vector of values. If length-one TRUE, then all files that were previously down-
loaded will be overwritten throughout the sequence of setupProject. If a vec-
tor of logical or character, these will be passed to getModule: only the named
modules will be overwritten or the logical vector of the modules. NOTE: if a
vector, no other file specified anywhere in setupProject will be overwritten
except a module that/those names, because only setupModules is currently re-
sponsive to a vector. To have fine grained control, a user can just manually delete
a file, then rerun.

verbose Numeric or logical indicating how verbose should the function be. If -1 or -2,
then as little verbosity as possible. If 0 or FALSE, then minimal outputs; if
1 or TRUE, more outputs; 2 even more. NOTE: in Require function, when
verbose >= 2, also returns details as if returnDetails = TRUE (for backwards
compatibility).

defaultDots A named list of any arbitrary R objects. These can be supplied to give default
values to objects that are otherwise passed in with the ..., i.e., not specifically
named for these setup* functions. If named objects are supplied as top-level
arguments, then the defaultDots will be overridden. This can be particularly
useful if the arguments passed to ... do not always exist, but rely on external
e.g., batch processing to optionally fill them. See examples.

envir The environment where setupProject is called from. Defaults to parent.frame()
which should be fine in most cases and user shouldn’t need to set this

dots Any other named objects passed as a list a user might want for other elements.

... further named arguments that acts like objects, but a different way to specify
them. These can be anything. The general use case is to create the objects that
are would be passed to SpaDES.core::simInit, or SpaDES.core::simInitAndSpades,
(e.g. studyAreaName or objects) or additional objects to be passed to the sim-
ulation (in older versions of SpaDES.core, these were passed as a named list to
the objects argument). Order matters. These are sequentially evaluated, and
also any arguments that are specified before the named arguments e.g., name,
paths, will be evaluated prior to any of the named arguments, i.e., "at the start"
of the setupProject. If placed after the first named argument, then they will
be evaluated at the end of the setupProject, so can access all the packages,
objects, etc.

Value

setupProject will return a named list with elements modules, paths, params, and times. The
goal of this list is to contain list elements that can be passed directly to simInit.



setupProject 25

It will also append all elements passed by the user in the .... This list can be passed directly
to SpaDES.core::simInit() or SpaDES.core::simInitAndSpades() using a do.call(). See
example.

NOTE: both projectPath and packagePath will be omitted in the paths list as they are used to
set current directory (found with getwd()) and .libPaths()[1], but are not accepted by simInit.
setupPaths will still return these two paths as its outputs are not expected to be passed directly to
simInit (unlike setupProject outputs).

Faster runtime after project is set up

There are a number of checks that occur during setupProject. These take time, particularly after
an R restart (there is some caching in RAM that occurs, but this will only speed things up if there is
no restart of R). To get the "fastest", these options or settings will speed things up, at the expense of
not being completely re-runnable. You can add one or more of these to the arguments. These will
only be useful after a project is set up, i.e., setupProject and SpaDES.core::simInit has/have
been run at least once to completion (so packages are installed).

options = c(
reproducible.useMemoise = TRUE, # For caching, use memory objects
Require.cloneFrom = Sys.getenv("R_LIBS_USER"),# Use personal library as possible source of packages
spades.useRequire = FALSE, # Won't install packages/update versions
spades.moduleCodeChecks = FALSE, # moduleCodeChecks checks for metadata mismatches
reproducible.inputPaths = "~/allData"), # For sharing data files across projects

packages = NULL, # Prevents any packages installs with setupProject
useGit = FALSE # Prevents checks using git

These will be set early in setupProject, so will affect the running of setupProject. If the user
manually sets one of these in addition to setting these, the user options will override these. The
remining causes of setupProject being "slow" will be loading the required packages.

These options/arguments can now be set all at once (with caution as these changes will affect how
your script will be run) with options(SpaDES.project.fast = TRUE) or in the options argument.

Objective

The overarching objectives for these functions are:

1. To prepare what is needed for simInit.

2. To help a user eliminate virtually all assignments to the .GlobalEnv, as these create and
encourage spaghetti code that becomes unreproducible as the project increases in complexity.

3. Be very simple for beginners, but powerful enough to expand to almost any needs of arbitrarily
complex projects, using the same structure

4. Deal with the complexities of R package installation and loading when working with modules
that may have been created by many users

5. Create a common SpaDES project structure, allowing easy transition from one project to an-
other, regardless of complexity.



26 setupProject

Convenience elements

Sequential evaluation: Throughout these functions, efforts have been made to implement se-
quential evaluation, within files and within lists. This means that a user can use the values from
an upstream element in the list. For example, the following where projectPath is part of the list
that will be assigned to the paths argument and it is then used in the subsequent list element is
valid:

setupPaths(paths = list(projectPath = "here",
modulePath = file.path(paths[["projectPath"]], "modules")))

Because of such sequential evaluation, paths, options, and params files can be sequential lists
that have impose a hierarchy specified by the order. For example, a user can first create a list
of default options, then several lists of user-desired options behind an if (user("emcintir"))
block that add new or override existing elements, followed by machine specific values, such as
paths.

setupOptions(
maxMemory <- 5e+9 # if (grepl("LandWeb", runName)) 5e+12 else 5e+9

# Example -- Use any arbitrary object that can be passed in the `...` of `setupOptions`
# or `setupProject`
if (.mode == "development") {

list(test = 2)
}
if (machine("A127")) {
list(test = 3)

}
)

Values and/or files: The arguments, paths, options, and params, can all understand lists of
named values, character vectors, or a mixture by using a list where named elements are values
and unnamed elements are character strings/vectors. Any unnamed character string/vector will be
treated as a file path. If that file path has an @ symbol, it will be assumed to be a file that exists
on a GitHub repository in https://github.com. So a user can pass values, or pointers to remote
and/or local paths that themselves have values.
The following will set an option as declared, plus read the local file (with relative path), plus
download and read the cloud-hosted file.

setupProject(
options = list(reproducible.useTerra = TRUE,

"inst/options.R",
"PredictiveEcology/SpaDES.project@transition/inst/options.R")
)

)

This approach allows for an organic growth of complexity, e.g., a user begins with only named
lists of values, but then as the number of values increases, it may be helpful to put some in an
external file.
NOTE: if the GitHub repository is private the user must configure their GitHub token by setting
the GITHUB_PAT environment variable – unfortunately, the usethis approach to setting the
token will not work at this moment.



setupProject 27

Specifying paths, options, params: If paths, options, and/or params are a character string
or character vector (or part of an unnamed list element) the string(s) will be interpreted as files to
parse. These files should contain R code that specifies named lists, where the names are one or
more paths, options, or are module names, each with a named list of parameters for that named
module. This last named list for params follows the convention used for the params argument in
simInit(..., params = ).
These files can use paths, times, plus any previous list in the sequence of params or options
specified. Any functions that are used must be available, e.g., prefixed Require::normPath if the
package has not been loaded (as recommended).
If passing a file to options, it should not set options() explicitly; only create named lists. This
enables options checking/validating to occur within setupOptions and setupParams. A simplest
case would be a file with this: opts <- list(reproducible.destinationPath = "~/destPath").
All named lists will be parsed into their own environment, and then will be sequentially evaluated
(i.e., subsequent lists will have access to previous lists), with each named elements setting or
replacing the previously named element of the same name, creating a single list. This final list
will be assigned to, e.g., options() inside setupOptions.
Because each list is parsed separately, they to not need to be assigned objects; if they are, the
object name can be any name, even if similar to another object’s name used to built the same
argument’s (i.e. paths, params, options) final list. Hence, in an file to passed to options,
instead of incrementing the list as:

a <- list(optA = 1)
b <- append(a, list(optB = 2))
c <- append(b, list(optC = 2.5))
d <- append(c, list(optD = 3))

one can do:

a <- list(optA = 1)
a <- list(optB = 2)
c <- list(optC = 2.5)
list(optD = 3)

NOTE: only atomics (i.e., character, numeric, etc.), named lists, or either of these that are pro-
tected by 1 level of "if" are parsed. This will not work, therefore, for other side-effect elements,
like authenticating with a cloud service.
Several helper functions exist within SpaDES.project that may be useful, such as user(...),
machine(...)

Can hard code arguments that may be missing: To allow for batch submission, a user can
specify code argument = value even if value is missing. This type of specification will not work
in normal parsing of arguments, but it is designed to work here. In the next example, .mode =
.mode can be specified, but if R cannot find .mode for the right hand side, it will just skip with
no error. Thus a user can source a script with the following line from batch script where .mode is
specified. When running this line without that batch script specification, then this will assign no
value to .mode. We include .nodes which shows an example of passing a value that does exist.
The non-existent .mode will be returned in the out, but as an unevaluated, captured list element.

.nodes <- 2
out <- setupProject(.mode = .mode,



28 spadesProjectOptions

.nodes = .nodes,
options = "inst/options.R"
)

See Also

setupPaths(), setupOptions(), setupPackages(), setupModules(), setupGitIgnore(). Also,
helpful functions such as user(), machine(), node()

vignette("i-getting-started", package = "SpaDES.project")

Examples

## For more examples:
vignette("i-getting-started", package = "SpaDES.project")

library(SpaDES.project)

## simplest case; just creates folders
out <- setupProject(

paths = list(projectPath = ".") #
)

spadesProjectOptions SpaDES.project options

Description

These demonstrate default values for some options that can be set in SpaDES.project. To see de-
faults, run spadesProjectOptions(). See Details below.

Usage

spadesProjectOptions()

Details

Below are options that can be set with options("spades.xxx" = newValue), where xxx is one of
the values below, and newValue is a new value to give the option. Sometimes these options can be
placed in the user’s .Rprofile file so they persist between sessions.

The following options are used, using the prefix: spades

OPTION DEFAULT VALUE DESCRIPTION
reproducible.cachePath NOTE: uses reproducible. Defaults is within projectPath, with subfolder "cache"
spades.inputPath Default is within projectPath, with subfolder "inputs"
spades.modulePath Default is within projectPath, with subfolder "modules"



user 29

spades.outputPath Default is within projectPath, with subfolder "outputs"
spades.packagePath Default to .libPathDefault(<projectPath>)
spades.projectPath Default "."
spades.scratchPath Default is within tempdir(), with subfolder
SpaDES.project.Restart Default is FALSE. Passed to Restart argument in setupProject
SpaDES.project.useGit Default is FALSE. Passed to useGit argument in setupProject

Value

named list of the default options currently available.

user Helpers to develop easier to understand code.

Description

A set of lightweight helpers that are often not strictly necessary, but they make code easier to read.

Usage

user(username = NULL)

machine(machinename = NULL)

node(machinename = NULL)

Arguments

username A character string of a username.

machinename A character string, which will be used as a partial match via grep, so the en-
tire machine name is not necessary. A user can use regex if needed, e.g.,
"^machine1" will match "machine15" and "machine12", but not "thisIs_machine1".

Details

node is an alias for machine

Value

if username is non-NULL, returns a logical indicating whether the current user matches the supplied
username. Otherwise returns a character string with the value of the current user.

machine returns a logical indicating whether the current machine name Sys.info()[["nodename"]]
is matched by machinename.



Index

.libPathDefault, 3

.teardownProject, 4

findProjectName (findProjectPath), 4
findProjectPath, 4

getGithubFile, 5, 6
getModule, 5, 6

listModules, 7

machine (user), 29
machine(), 28
makeDESCRIPTION

(makeDESCRIPTIONproject), 8
makeDESCRIPTIONproject, 8
metadataInModules (packagesInModules),

10
metadataInModules(), 8
moduleDependencies (listModules), 7
moduleDependenciesToGraph

(listModules), 7

node (user), 29
node(), 28

packagesInModules, 10
pkgload2, 11
PlotModuleGraph (listModules), 7

setProjPkgDir, 12
setup, 15, 17, 18, 22, 23
setupFiles (setupPaths), 12
setupFunctions (setupPaths), 12
setupGitIgnore (setupPaths), 12
setupGitIgnore(), 28
setupModules (setupPaths), 12
setupModules(), 28
setupOptions (setupPaths), 12
setupOptions(), 28
setupPackages (setupPaths), 12

setupPackages(), 28
setupParams (setupPaths), 12
setupPaths, 12
setupPaths(), 28
setupProject, 21
setupSideEffects (setupPaths), 12
setupStudyArea (setupPaths), 12
SpaDES.project

(SpaDES.project-package), 2
SpaDES.project-package, 2
spadesProjectOptions, 28

user, 29
user(), 28

30


	SpaDES.project-package
	.libPathDefault
	.teardownProject
	findProjectPath
	getGithubFile
	getModule
	listModules
	makeDESCRIPTIONproject
	packagesInModules
	pkgload2
	setProjPkgDir
	setupPaths
	setupProject
	spadesProjectOptions
	user
	Index

