Package: fireSenseUtils (via r-universe)

October 2, 2024

Type Package Title Utilities for Working With the 'fireSense' Group of 'SpaDES' Modules Description Utilities for working with the 'fireSense' group of 'SpaDES' modules. Date 2024-07-10 Version 0.0.5.9073 **Depends** R (>= 4.2)**Imports** crayon, data.table, DEoptim, EnvStats, fastDummies, kSamples, LandR (>= 1.1.0.9066), mclust, methods, qs, quickPlot, parallelly, pemisc (>= 0.0.4.9011), pROC, purrr, reproducible (>= 2.0.12), RhpcBLASctl, sf, sp, SpaDES.tools (>= 2.0.4), stats, terra, utils Suggests cowplot, dplyr, ggplot2, knitr, lintr, PtProcess, raster, rasterVis, RColorBrewer, Require (>= 0.3.1), remotes, rmarkdown, SpaDES.core, spatstat, spelling, testthat Remotes PredictiveEcology/LandR@development,

PredictiveEcology/pemisc@development, PredictiveEcology/SpaDES.core@development, PredictiveEcology/SpaDES.tools@development, PredictiveEcology/Require@development, PredictiveEcology/reproducible@development

VignetteBuilder knitr, rmarkdown

Encoding UTF-8

Language en-CA

LazyData true

License GPL-3

BugReports https://github.com/PredictiveEcology/fireSenseUtils/issues

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

Contents

Repositoryhttps://predictiveecology.r-universe.devRemoteUrlhttps://github.com/PredictiveEcology/fireSenseUtilsRemoteRefdevelopmentRemoteSha492560cf40d720ba03f6131be67235ccc3c23e75

Contents

fireSenseUtils-package 3
.objFunIgnition
.objFunIgnitionPW
.objfunSpreadFit
annualStackToDTx1000 7
bufferIgnitionPoints
bufferToArea
bufferToAreaRast
buildCohortBurnHistory 11
burnClassGenerator
calcYoungAge
castCohortData
chk_duplicatedStartPixels
cleanUpSpreadFirePoints
climateRasterToDataTable
cohortsToFuelClasses
compareMDC
dtReplaceNAwith0
extractSpecial
getFirePoints_NFDB 21
getFirePoints_NFDB_V2
getFirePolygons
harmonizeBufferAndPoints
harmonizeFireData
logistic4p
makeFireIDs 25
makeLandcoverDT
makeLociList
makeMutuallyExclusive
makeRastersFromCD
makeTSD
multiplier
objNlminb
oom
plotBurnSummary
plotCumulativeBurns
plotHistoricFires
predictIgnition
pw
rasterFireBufferDT

rasterFireSpreadPoints	36
rbetaBetween	36
removeBufferedFiresOutsideRTM	37
rescaleKnown2	37
runDEoptim	38
stackAndExtract	41
updateStackYearNames	41
visualizeDE	42
	43

Index

fireSenseUtils-package

fireSenseUtils package

Description

Utilities for working with the 'fireSense' group of 'SpaDES' modules.

Author(s)

Maintainer: Eliot J B McIntire <eliot.mcintire@nrcan-rncan.gc.ca> (ORCID)

Authors:

- Jean Marchal < jean.d.marchal@gmail.com>
- Alex M Chubaty <achubaty@for-cast.ca> (ORCID)
- Ian Eddy <ian.eddy@nrcan-rncan.gc.ca>(ORCID)

See Also

Useful links:

• Report bugs at https://github.com/PredictiveEcology/fireSenseUtils/issues

.objFunIgnition Objective function when no piecewise model is used

Description

Objective function when no piecewise model is used

Usage

.objFunIgnition(params, linkinv, nll, sm, nx, mm, mod_env, offset)

Arguments

params	DESCRIPTION NEEDED
linkinv	the link function
nll	the log-likelihood function
sm	scaling matrix
nx	number of covariates
mm	model matrix containing data
mod_env	the environment containing params - can be a data.frame
offset	DESCRIPTION NEEDED

Value

DESCRIPTION NEEDED

.objFunIgnitionPW Function to pass to the optimizer - Piece-wise version

Description

Function to pass to the optimizer - Piece-wise version

Usage

```
.objFunIgnitionPW(
   params,
   formula,
   linkinv,
   nll,
   sm,
   updateKnotExpr,
   nx,
   mod_env,
   offset
)
```

Arguments

params	DESCRIPTION NEEDED
formula	DESCRIPTION NEEDED
linkinv	DESCRIPTION NEEDED
nll	DESCRIPTION NEEDED
sm	DESCRIPTION NEEDED
updateKnotExpr	DESCRIPTION NEEDED
nx	DESCRIPTION NEEDED
mod_env	the environment containing params - can be a data.frame
offset	DESCRIPTION NEEDED

4

.objfunSpreadFit

Value

DESCRIPTION NEEDED

.objfunSpreadFit Objective function for fireSense_spreadFit module

Description

Objective function for fireSense_spreadFit module

Usage

```
.objfunSpreadFit(
 par,
  landscape,
  annualDTx1000,
 nonAnnualDTx1000,
 FS_formula,
 historicalFires,
  fireBufferedListDT,
  covMinMax = NULL,
 maxFireSpread = 0.28,
 minFireSize = 2,
  tests = "snll_fs",
 Nreps = 10,
 mutuallyExclusive = list(youngAge = c("class", "nf")),
 doAssertions = TRUE,
 plot.it = FALSE,
 objFunCoresInternal = 1,
 lanscape1stQuantileThresh = 0.265,
  thresh = 550,
 weighted = TRUE,
  verbose = TRUE
)
```

Arguments

par	parameters
landscape	A SpatRaster with extent, res, proj used for SpaDES.tools::spread2
annualDTx1000	A list of data.table class objects. Each list element is data from a single calendar year, and whose name is "yearxxxx" where xxxx is the 4 number year. The columns in the data.table must integers, that are 1000x their actual values as this function will divide by 1000.

nonAnnua]DTx1000		
	Like annualDTx1000, but with where each list element will be used for >1 year. The names of the list elements must be "yearxxxx_yearyyyy_yearzzzz" where the xxxx, yyyy, or zzzz represent the calendar years for which that list element should be used. The columns are variables that are used for more than 1 year.	
FS_formula	Formula, put provided as a character string, not class formula. (if it is provided as a class formula, then it invariably will have an enormous amount of data hidden in the formula environment; this is bad for DEoptim)	
historicalFire	S	
fireBufferedLi	DESCRIPTION NEEDED stDT	
	DESCRIPTION NEEDED	
covMinMax	This is a 2 row by multiple column data.frame indicating the minimum and max- imum values of the original covariate data values. These will be used to rescale the covariates internally so that they are all between 0 and 1. It is important to not simply rescale internally here because only 1 year is run at a time; all years must be rescaled for a given covariate by the same amount.	
maxFireSpread	A value for spreadProb that is considered impossible to go above. Default 0.28, which is overly generous unless there are many non-flammable pixels (e.g., lakes).	
minFireSize	DESCRIPTION NEEDED	
tests	One or more of "mad", "adTest", "SNLL", or "SNLL_FS". Default: "mad".	
Nreps	Integer. The number of replicates, per ignition, to run.	
mutuallyExclus	ive	
	If there are any covariates, e.g., youngAge, that should be considered mutually exclusive, i.e., "if youngAge is non-zero, should vegPC2 be set to zero", then this can be done here. A named list, where the name of the list element must be a single covariate column name in either annualDTx1000 or nonAnnualDTx1000. The list content should be a "grep" pattern with which to match column names, e.g., "vegPC". The values of all column names that match the grep value will be set to 0, whenever the name of that list element is non-zero. Default is list("youngAge" = list("vegPC")), meaning that all columns with vegPC in their name will be set to zero wherever youngAge is non-zero.	
doAssertions	Logical. If TRUE, the default, the function will test a few minor things for con- sistency. This should be set to FALSE for operational situations, as the assertions take some small amount of time.	
plot.it	DESCRIPTION NEEDED	
objFunCoresInt	ernal	
	Internally, this function can use mcmapply to run multiple parallel spread func- tion calls. This should only be >1L if there are spare threads. It is highly likely that there won't be. However, sometimes the DEoptim is particularly inefficient, it starts X cores, and immediately several of them are stopped inside this func- tion because the parameters are so bad, only 2 year are attempted. Then the core will stay idle until all other cores for the DEoptim iteration are complete.	

core will stay idle until all other cores for the DEoptim iteration are complete. Similarly, if only physical cores are used for DEoptim, the additional use of hyperthreaded cores here, internally will speed things up (i.e., this maybe could be 2L or 3L). lanscape1stQuantileThresh

	A spreadProb value that represents a threshold for the 1st quantile of the spreadProbs on the landscape; if that quantile is above this number, then the .objFunSpredFit will bail because it is "too burny" a landscape. Default = 0.265, meaning if only 25% of the pixels on the landscape are below this spreadProb, then it will bail.
thresh	Threshold multiplier used in SNLL fire size (SNLL_FS) test. Default 550. Low- ering the threshold value will be more restrictive, but being too restrictive will result in DEoptim rejecting more tests and using the "fail value" of 10000. Too high a threshold, and more years will be run and it will take longer to find values.
weighted	Logical. Should empirical likelihood be weighted by log of the actual fire size? This will give large fires more influence on the SNLL.
verbose	DESCRIPTION NEEDED

Value

Attempting a weighted likelihood, https://stats.stackexchange.com/questions/267464/algorithms-for-weighted With log(fireSize) * likelihood for each fire.

annualStackToDTx1000 Convert list of annual SpatRaster to data.table

Description

Convert list of annual SpatRaster to data.table

Usage

```
annualStackToDTx1000(x, whNotNA, ...)
## S3 method for class 'SpatRaster'
annualStackToDTx1000(x, whNotNA, ...)
## S3 method for class 'Raster'
annualStackToDTx1000(x, whNotNA, ...)
## S3 method for class 'list'
annualStackToDTx1000(x, whNotNA, ...)
```

Arguments

х	RasterStack or list of rasters to convert to data.table and multiply by 1000
	to save space
whNotNA	Pixel indexes that should go through this process (i.e. not NA)
	Not currently used

Value

data.table of the SpatRaster or the list

Examples

```
library(raster)
r1 <- raster(extent(0, 10, 0, 10), vals = 1:100)
r2 <- raster(extent(0, 10, 0, 10), vals = 100:1)
r3 <- raster(extent(0, 10, 0, 10), vals = 200:101)
r4 <- raster(extent(0, 10, 0, 10), vals = 300:201)
# list of Rasters
lRast <- list(r1, r2, r3)</pre>
lRast[[1]][5] <- NA</pre>
whNotNA <- setdiff(1:ncell(r1), 5)</pre>
# unnamed -- should error
try(out1 <- annualStackToDTx1000(lRast, whNotNA))</pre>
# named
names(lRast) <- c("OneToHun", "HunToOne", "TwoHunToOneHun")</pre>
out1 <- annualStackToDTx1000(lRast, whNotNA)</pre>
# RasterStack
out2 <- annualStackToDTx1000(raster::stack(lRast), whNotNA)</pre>
# List of RasterStacks
s1 <- raster::stack(r1, r2)</pre>
names(s1) <- names(lRast)[1:2]</pre>
s2 <- raster::stack(r4, r3)</pre>
names(s2) <- c(names(lRast)[3], "ThreeHunToTwoHun")</pre>
out3 <- annualStackToDTx1000(list(s1 = s1, s2 = s2), whNotNA) ## named list required
# With duplicated names -- to remove duplicates;
# actually, this doesn't make sense: RasterStack can't have duplicated names
names(lRast) <- c("OneToHun", "OneToHun", "TwoHunToOneHun")</pre>
out4 <- annualStackToDTx1000(raster::stack(lRast), whNotNA)</pre>
```

bufferIgnitionPoints buffer ignition points to create non-ignitions for model

Description

buffer ignition points to create non-ignitions for model

Usage

```
bufferIgnitionPoints(ignitionPoints, rtm, bufferSize)
```

bufferToArea

Arguments

ignitionPoints	SpatialPolygonsDataFrame with year of ignition
rtm	a template raster
bufferSize	the size of the buffers

Value

a list of data.tables containing indices inside buffered area of each year's ignitions

bufferToArea

Create buffers around polygons based on area target for buffer

Description

Create buffers around polygons based on area target for buffer

Usage

```
bufferToArea(
  poly,
  rasterToMatch,
  areaMultiplier,
  verb = FALSE,
  polyName = NULL,
  field = NULL,
  minSize = 500,
  cores = 1,
  . . .
)
## S3 method for class 'list'
bufferToArea(
  poly,
  rasterToMatch,
  areaMultiplier = 10,
  verb = FALSE,
  polyName = NULL,
  field = NULL,
  minSize = 500,
  cores = 1,
  . . .
)
## S3 method for class 'SpatialPolygons'
bufferToArea(
  poly,
```

```
rasterToMatch,
 areaMultiplier = 10,
 verb = FALSE,
  polyName = NULL,
 field = NULL,
 minSize = 500,
 cores = 1,
  . . .
)
## S3 method for class 'sf'
bufferToArea(
 poly,
 rasterToMatch,
 areaMultiplier = 10,
  verb = FALSE,
  polyName = NULL,
  field = NULL,
 minSize = 500,
 cores = 1,
  • • •
)
```

Arguments

poly	sf polygons or a list of sf containing polygons to buffer.
rasterToMatch	A SpatRaster with res, origin, extent, crs of desired outputted pixelID values.
areaMultiplier	Either a scalar that will buffer areaMultiplier * fireSize or a function of fireSize. Default is 1. See multiplier() for an example.
verb	Logical or numeric related to how much verbosity is printed. FALSE or 0 is none. TRUE or 1 is some. 2 is much more.
polyName	Optional character string of the polygon layer name (not the individual polygons on a sf polygon object)
field	Passed to fasterize::fasterize. If this is unique (such as polygon id), then each polygon will have its buffer calculated independently for each unique value in field
minSize	The absolute minimum size of the buffer & non-buffer together. This will be imposed after areaMultiplier.
cores	number of processor cores to use
	passed to fasterize::fasterize

Value

A data.table (or list of data.tables if poly was a list) with 2 columns: buffer and pixelID. buffer is either 1 (the original polygon) or 0 (in the buffer).

10

bufferToAreaRast

create a variable sized buffer around a set of pixels belonging to the same fire ID

Description

create a variable sized buffer around a set of pixels belonging to the same fire ID

Usage

```
bufferToAreaRast(fireIDraster, areaMultiplier, minSize, flammableRTM, verb = 1)
```

Arguments

fireIDraster	a SpatRaster with values representing distinct fires in a year
areaMultiplier	A scalar that will buffer areaMultiplier * fireSize
minSize	The absolute minimum size of the buffer & non-buffer together. This will be imposed after a reaMultiplier.
flammableRTM	@template flammableRTM
verb	Logical or numeric related to how much verbosity is printed. FALSE or 0 is none. TRUE or 1 is some. 2 is much more.

Value

a data.table with fire ID, buffer status, and pixelID

```
buildCohortBurnHistory
```

Modify cohortData with burn column

Description

Modify cohortData with burn column

Usage

```
buildCohortBurnHistory(cohortData, pixelGroupMap, firePolys, year)
```

Arguments

cohortData	either a cohortData object or list of cohortData objects named by year
pixelGroupMap	either a SpatRaster with pixelGroups or list of SpatRasters named by year
firePolys	the output of fireSenseUtils::getFirePolys with YEAR column
year	length-two vector giving temporal period used to subset firePolys. Closed inter- val

Value

cohortData modified with burn status

burnClassGenerator Generate, Summarize, Predict Burn Classes from Covariates

Description

Generate, Summarize, Predict Burn Classes from Covariates

Usage

```
burnClassGenerator(df, numClasses = 4:9, AUC = TRUE, plotAUC = FALSE)
```

burnClassSummary(mod)

burnClassPredict(mod, df)

burnProbFromClass(mod, df)

Arguments

df	A data.frame (or data.table), with covariates, including "burned" (a binary 0, 1; not burned = 0, burned = 1), e.g., timeSinceFire, biomassJackPine, etc. that will be used to find fuel classes. This set of covariates must be available both during fitting and for prediction. These must be quantitative.
numClasses	A vector indicating how many classes should be attempted. The function will return the number of classes that best classify the data into homogeneous groups.
AUC	Logical. Should the Area Under the receiver operating Curve be returned?
plotAUC	Logical. Should the plot of the AUC be made.
mod	A model of class Mclust, e.g., coming from Mclust or burnClassGenerator $% \mathcal{A} = \mathcal{A} = \mathcal{A} + \mathcal{A}$

Details

This was inspired by reading here: https://www.datanovia.com/en/blog/types-of-clustering-methods-overviewand here: https://www.datanovia.com/en/lessons/model-based-clustering-essentials/, with citation here: Scrucca L., Fop M., Murphy T. B. and Raftery A. E. (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models, The R Journal, 8/1, pp. 205-233. https://journal.r-project.org/archive/2016/RJ-2016-021/RJ-2016-021.pdf

Value

A list with 2 elements, first the model, which comes from mclust::Mclust, and second the Area Under the Curve or AUC as an indicator of the overall goodness of fit.

burnClassGenerator

The algorithm

The basic solution is to take all covariates, including the binary "not burned", "burned" (coded as 0 and 1, respectively), and do model-based clustering with the mclust R package. We can choose a fixed number of burn classes, or a finite range (see numClasses argument. This will make numClasses "homogeneous" groups, including whether they burned or not. From this, we can identify groups by looking at the mean values of "burned" to see what their burn tendency is as a "homogeneous" group.

Categorical data

For now, it is recommended to convert categorical data to dummy variables, 0 and 1. E.g., For land cover, wetland class can be converted to a column "wetland" with 1 for data points that are wetlands and 0 for non-wetland.

How much data to include

This has not been tested yet; however, I believe that having a relatively similar number of "burned" and "unburned" pixels (within 3x either way), is probably a good idea. In other words, if there are 100,000 burned data points, there should be between 30,000 and 300,000 unburned data points. If there are already buffers around the burned polygons that include unburned pixels, then these buffers can be used as part of the unburned content.

Author(s)

Eliot McIntire

Examples

```
## Not run:
# Use own data; here is a generated set for reprex
library("data.table")
N <- 1e5
DT <- list()
for (i in c("train", "test")) {
 DT[[i]] <- data.table(burned = sample(c(0, 0, 0, 1), replace = TRUE, size = N))</pre>
 set(DT[[i]], NULL, "jp", rlnorm(N, mean = 4 + 0.5 * DT[[i]]$burned, sd = 0.25))
 set(DT[[i]], NULL, "bs", rlnorm(N, mean = 4 + 0.3 * DT[[i]]$burned, sd = 0.25))
 set(DT[[i]], NULL, "ws", rlnorm(N, mean = 4 + 0.2 * DT[[i]]$burned, sd = 0.25))
 set(DT[[i]], NULL, "age", rlnorm(N, mean = 4 - 0.2 * DT[[i]]$burned, sd = 0.25))
 DT[[i]][, c("jp", "bs", "ws", "age") := lapply(.SD, function(x) x / max(x) * 1000),
    .SDcols = c("jp", "bs", "ws", "age")
 ٦
 DT[[i]][, c("age") := lapply(.SD, function(x) x / max(x) * 200), .SDcols = c("age")]
 summary(DT[[i]])
 boxplot(DT[[i]]$age ~ DT[[i]]$burned)
}
bc <- burnClassGenerator(DT[["train"]], 4:8)</pre>
# Show if the model is good at predicting burn state
(bc$AUC) # area under the curve
```

```
# print summary of mean values of each burn class
(summ <- burnClassSummary(bc$model))
# predict -- add Burn Class to object
set(DT[["test"]], NULL, "burnClass", burnClassPredict(bc$model, df = DT[["test"]]))
prob <- burnProbFromClass(bc$model, DT[["test"]])
## End(Not run)
```

calcYoungAge Iteratively calculate youngAge column in FS covariates

Description

Iteratively calculate youngAge column in FS covariates

Usage

```
calcYoungAge(
  years,
  annualCovariates,
  standAgeMap,
  fireBufferedListDT,
  cutoffForYoungAge = 15
)
```

Arguments

years	the years over which to iterate	
annualCovariates		
	list of data.table objects with pixelID	
standAgeMap	template SpatRaster	
fireBufferedListDT		
	data.table containing non-annual burn and buffer pixelIDs	
cutoffForYoungAge		
	Numeric. Default is 15. This is the age below which the pixel is considered "young" -> youngAge column will be 1 if age <= 15	

Value

a raster layer with unified standAge and time-since-disturbance values

castCohortData

Description

preparing covariates for fitting modules

Usage

```
castCohortData(
  cohortData,
  pixelGroupMap,
  lcc,
  ageMap = NULL,
  missingLCC,
  year = NULL,
  cutoffForYoungAge = 15
)
```

Arguments

cohortData	A data.table with columns: pixelGroup, ecoregionGroup, speciesCode, and optionally age, B, mortality, aNPPAct, and sumB.	
pixelGroupMap	A RasterLayer with pixel values equal to a pixel group number that corresponds exactly to pixelGroup column in cohortData.	
lcc	data.table of dummified landcover	
ageMap	a stand age map to assign ages to non-forest LCC used during predict	
missingLCC	LCC class to assign forested pixels absent from cohortData must be a character matching a nonForestedLCC group, e.g. `nonForest_highFlam'	
year	numeric representing the year represented by cohortData	
cutoffForYoungAge		
	Numeric. Default is 15. This is the age below which the pixel is considered "young" -> youngAge column will be 1 if age <= 15	

Value

a trimmed cohortData with wide-layout and rows for every pixel in lcc

chk_duplicatedStartPixels

Data checks and assertions for spreadFitRun

Description

Data checks and assertions for spreadFitRun

Usage

```
chk_duplicatedStartPixels(cells, size)
```

.doDataChecks(moduleName, envir, attribs, fml)

Arguments

cells	DESCRIPTION NEEDED
size	DESCRIPTION NEEDED
moduleName	DESCRIPTION NEEDED
envir	DESCRIPTION NEEDED
attribs	DESCRIPTION NEEDED
fml	DESCRIPTION NEEDED

Value

DESCRIPTION NEEDED DESCRIPTION NEEDED

cleanUpSpreadFirePoints

Ensure fire points are located on flammable pixels inside a fire polygon Intended to be run using Map

Description

Ensure fire points are located on flammable pixels inside a fire polygon Intended to be run using Map

Usage

cleanUpSpreadFirePoints(firePoints, bufferDT, flammableRTM)

Arguments

firePoints	a sf points object representing annual ignitions
bufferDT	a data.table of burned cells, output from bufferToArea
flammableRTM	a rasterToMatch with binary values where 1 represents flammable pixels, 0 nonflammable, and NA no data

Value

a list of harmonized points and polygons

climateRasterToDataTable

Converts stacks of climate rasters to data.table and optionally subsets to index

Description

Converts stacks of climate rasters to data.table and optionally subsets to index

Usage

```
climateRasterToDataTable(historicalClimateRasters, Index = NULL)
```

Arguments

historicalClima	teRasters
	named list of SpatRaster objects
Index	optional list of data.table objects named by fireYear and containing fire buffer indices

Value

a long-layout data.table of climate values in each pixel and year

cohortsToFuelClasses Classify pixelGroups by flammability

Description

Classify pixelGroups by flammability

Usage

```
cohortsToFuelClasses(
  cohortData,
  pixelGroupMap,
  flammableRTM,
  landcoverDT = NULL,
  sppEquiv,
  sppEquivCol,
  cutoffForYoungAge,
  fuelClassCol = "FuelClass"
)
```

Arguments

cohortData	A data.table with columns: pixelGroup, ecoregionGroup, speciesCode, and optionally age, B, mortality, aNPPAct, and sumB.	
pixelGroupMap	A RasterLayer with pixel values equal to a pixel group number that corre- sponds exactly to pixelGroup column in cohortData.	
flammableRTM	a rasterToMatch with binary values where 1 represents flammable pixels, 0 nonflammable, and NA no data	
landcoverDT	Optional table of nonforest landcovers and pixel indices. It will override pixel values in cohortData, if supplied.	
sppEquiv	<pre>table with species name equivalencies between the kNN and final naming for- mats. See data("sppEquivalencies_CA", "LandR"). Only necessary if mixedType == 2. If not provided and mixedType == 2, will attempt to use data("sppEquivalencies_CA", "LandR").</pre>	
sppEquivCol	the column name to use from sppEquiv.	
cutoffForYoungAge		
	age at and below which pixels are considered 'young'	
fuelClassCol	the column in sppEquiv that describes unique fuel classes	

Value

a SpatRaster of biomass by fuel class as determined by fuelClassCol and cohortData

compareMDC

Description

Download and prepare fire data from National Fire Database

Usage

```
compareMDC(
    historicalMDC,
    projectedMDC,
    flammableRTM = NULL,
    Ylimits = c(80, 220),
    firstHistoricalYear = 2001,
    firstProjectedYear = 2011
)
```

Arguments

historicalMDC	raster stack of historical MDC	
projectedMDC	raster stack of projected MDC	
flammableRTM	an optional raster of flammable pixels to subset data	
Ylimits	the upper and lower MDC range for the plot	
firstHistoricalYear		
	the earliest year of historical data	
firstProjectedY	ear	
	the earliest year of projected data	

Value

a ggplot object

Examples

```
## Not run:
compareMDC(
    historicalMDC = simOutPreamble$historicalClimateRasters$MDC,
    projectedMDC = simOutPreamble$projectedClimateRasters$MDC,
    flammableRTM = fSsimDataPrep$flammableRTM
)
```

End(Not run)

dtReplaceNAwith0 Replace NAs in a data.table with zeros

Description

Replace NAs in a data.table with zeros

Usage

```
dtReplaceNAwith0(DT, colsToUse = NULL)
```

Arguments

DT	DESCRIPTION NEEDED
colsToUse	DESCRIPTION NEEDED

Value

DESCRIPTION NEEDED

extractSpecial	Extract the elements of the special terms, i.e. the variable and the knot
	value

Description

Extract the elements of the special terms, i.e. the variable and the knot value

Usage

```
extractSpecial(v, k)
```

Arguments

V	DESCRIPTION NEEDED
k	DESCRIPTION NEEDED

Value

DESCRIPTION NEEDED

getFirePoints_NFDB Get Fire SpatialPoints from Canadian Fire Database

Description

Get Fire SpatialPoints from Canadian Fire Database

Usage

```
getFirePoints_NFDB(
    url = NULL,
    studyArea = NULL,
    rasterToMatch = NULL,
    redownloadIn = 1,
    years = 1991:2017,
    fireSizeColName = "SIZE_HA",
    NFDB_pointPath
)
```

Arguments

url	Passed to prepInputs	
studyArea	A SpatialPolygons* object used as the principle study region, passed to prepInputs.	
rasterToMatch	A RasterLayer objects to use as the template for all subsequent raster opera- tions (i.e., the one used throughout the simulation).	
redownloadIn	Numeric Time in YEARS that we tolerate the data to be "old" i.e. 0.5 would mean "redownload data older than 6 months"	
years	Numeric vector of consecutive years to fetch.	
fireSizeColName		
	Character describing the name of the column containing fire size information.	
NFDB_pointPath	Passed to destinationPath in prepInputs	

Value

A sf spatial points object.

getFirePoints_NFDB_V2 Get Fire SpatialPoints from Canadian Fire Database

Description

Get Fire SpatialPoints from Canadian Fire Database

Usage

```
getFirePoints_NFDB_V2(
  url = NULL,
  studyArea = NULL,
  redownloadIn = 1,
  years = 1991:2017,
  fireSizeColName = "SIZE_HA",
  NFDB_pointPath = NULL,
  plot = FALSE
)
```

Arguments

url	Passed to prepInputs
studyArea	A SpatialPolygons* object used as the principle study region, passed to prepInputs.
redownloadIn	Numeric Time in YEARS that we tolerate the data to be "old" i.e. 0.5 would mean "re-download data older than 6 months"
years	Numeric vector of consecutive years to fetch.
fireSizeColName	
	Character describing the name of the column containing fire size information.
NFDB_pointPath	Passed to destinationPath in prepInputs
plot	logical indicating whether to produce plot of fire points. Default FALSE.

Value

A sf spatial points object.

getFirePolygons	Download and prepare fire data from National Fire Database	
-----------------	--	--

Description

Download and prepare fire data from National Fire Database

Usage

```
getFirePolygons(years, useInnerCache = FALSE, ...)
```

Arguments

years	years to filter fire polygons by
useInnerCache	logical indicating whether to cache the ${\tt prepInputs}$ call
	additional arguments passed to prepInputs()

Value

list of fire polygons by year

harmonizeBufferAndPoints

Cleaning up the polygon points

Description

Mostly this is about 2 things:

- 1. remove fires that were so small that they take less than 1 pixel so they are not in the buff object but are in the cent object.
- 2. the centroid cell is in a buffer or otherwise nonburnable cell (e.g., water). For 1) remove these from the centroid data. For 2) this function will search in the neighbourhood for the next closest pixel that has at least 7 available neighbours that can burn. If not, remove these.

Usage

harmonizeBufferAndPoints(cent, buff, ras, idCol = "FIRE_ID")

Arguments

cent	List of points as SpatialPointsDataFrame
buff	List of data.table objects with 3 columns, "buffer" which is 1 (in the fire) or 0 (in a buffer), ids which are the fire ids which MUST match the ids in the cent.
ras	The raster that created the pixelIDs in the buff.
idCol	The column name as a character string with the fire ids. Defaults to "FIRE_ID".

harmonizeFireData	Outer wrapper on spread fire polygon data munging that does several things:
	 ensure buffered fires are entirely in studyArea ensure every fire has a corresponding ignition point, and vice
	versa
	3. ensure these points are flammable

Description

Outer wrapper on spread fire polygon data munging that does several things:

- 1. ensure buffered fires are entirely in studyArea
- 2. ensure every fire has a corresponding ignition point, and vice versa
- 3. ensure these points are flammable

Usage

```
harmonizeFireData(
   firePolys,
   flammableRTM,
   spreadFirePoints,
   areaMultiplier,
   minSize,
   pointsIDcolumn = "FIRE_ID"
)
```

Arguments

firePolys	the semi-processed fire polys, with field matching pointsIDcolumn
flammableRTM	a rasterToMatch with binary values where 1 represents flammable pixels, 0 nonflammable, and NA no data $% \left({{{\rm{A}}_{\rm{A}}}} \right)$
spreadFirePoint	S
	the ignition points corresponding to firePolys
areaMultiplier	Either a scalar that will buffer areaMultiplier * fireSize or a function of fireSize. See ?fireSenseUtils::bufferToArea.
minSize	an alternative to areaMultiplier, typically used when fires are small
pointsIDcolumn	the name of the column denoting fire ids in both spreadFirePoints and firePolys

logistic4p

Description

Four- and five-parameter logistic functions

Usage

```
logistic4p(x, par)
logistic5p(x, par)
logistic3p(x, par, par1 = 0.1)
logistic2p(x, par, par1 = 0.1, par4 = 0.5)
```

Arguments

х	DESCRIPTION NEEDED
par	DESCRIPTION NEEDED
par1	DESCRIPTION NEEDED
par4	DESCRIPTION NEEDED

Value

DESCRIPTION NEEDED

makeFireIDs

identify each year's individual fires and buffer them accordingly

Description

identify each year's individual fires and buffer them accordingly

Usage

```
makeFireIDs(
   year,
   fireRaster,
   flammableRTM,
   bufferForFireRaster,
   areaMultiplier,
   minSize = 5000,
   verb = 1
)
```

Arguments

year	numeric fire year	
fireRaster	a SpatRaster with values representing fire years	
flammableRTM	a rasterToMatch with binary values where 1 represents flammable pixels, 0 nonflammable, and NA no data $% \left({{{\rm{A}}_{\rm{A}}}} \right)$	
bufferForFireRaster		
	buffer size used to group discrete patches of burned pixels as belonging to the same fire	
areaMultiplier	A scalar that will buffer areaMultiplier * fireSize	
minSize	The absolute minimum size of the buffer & non-buffer together. This will be imposed after a reaMultiplier.	
verb	Logical or numeric related to how much verbosity is printed. FALSE or 0 is none. TRUE or 1 is some. 2 is much more.	

Value

a data.table with fire ID, buffer status, and pixelID

makeLandcoverD1 Create lanacoverD1 object to classify and tra	ick non-jorest icc
---	--------------------

Description

Create landcoverDT object to classify and track non-forest lcc

Usage

```
makeLandcoverDT(rstLCC, flammableRTM, forestedLCC, nonForestedLCCGroups)
```

Arguments

rstLCC	landcover raster
flammableRTM	a <code>rasterToMatch</code> with binary values where 1 represents flammable pixels, 0 nonflammable, and NA no data
forestedLCC	vector of values representing forested landcover classes in rstLCC
nonForestedLCCG	roups
	a named list of non-forested flammable landcover groups

Value

a data.table with columns for pixelID and binary presence of landcover

26

makeLociList

Description

Must supply a raster so that points can be converted to the cells on a raster. It is assumed that the sizeCol is accurate. If not, it should be recalculated before this function call.

Usage

```
makeLociList(
  ras,
  pts,
  idsCol = "FIRE_ID",
  dateCol = "YEAR",
  sizeCol = "POLY_HA",
  sizeColUnits = "ha"
)
```

Arguments

ras	A raster that will be the template for cells (pixel ids)
pts	A list of sf point objects
idsCol	Character string identifying column name in pts that has unique id per event (i.e., fire)
dateCol	Character string identifying column name in pts that has year
sizeCol	Character string identifying column name in pts that has size of individual event. Can be in hectares or metres squared. Should set sizeColUnits
sizeColUnits	Character string. Either "ha" or "m2".

Value

A list of data.table objects, each with 4 columns, "size" (in pixels), "date", "ids" from idsCol, and "cells", which are the pixel indices of the pts points.

makeMutuallyExclusive guarantees mutually exclusive values in a data table

Description

guarantees mutually exclusive values in a data table

Usage

```
makeMutuallyExclusive(dt, mutuallyExclusiveCols = list(youngAge = c("vegPC")))
```

Arguments

dt a data.table with columns that should be mutually exclusive mutuallyExclusiveCols

A named list, where the name of the list element must be a single covariate column name in dt. The list content should be a "grep" pattern with which to match column names, e.g., "vegPC". The values of all column names that match the grep value will be set to 0, whenever the name of that list element is non-zero. Default is list("youngAge" = list("vegPC")), meaning that all columns with vegPC in their name will be set to zero wherever youngAge is non-zero.

Value

a data.table with relevant columns made mutually exclusive

makeRastersFromCD	<i>Put</i> cohortData <i>back into a</i> SpatRaster <i>with some extra details</i>
-------------------	--

Description

Put cohortData back into a SpatRaster with some extra details

Usage

```
makeRastersFromCD(class, cohortData, flammableRTM, pixelGroupMap)
```

Arguments

class	fuelClass from sppEquiv
cohortData	A data.table with columns: pixelGroup, ecoregionGroup, speciesCode, and optionally age, B, mortality, aNPPAct, and sumB.
flammableRTM	a rasterToMatch with binary values where 1 represents flammable pixels, 0 nonflammable, and NA no data
pixelGroupMap	A RasterLayer with pixel values equal to a pixel group number that corresponds exactly to pixelGroup column in cohortData.

makeTSD

Value

a SpatRaster with values equal to class biomass (B)

makeTSD

preparing a time since disturbance map from stand age and fire data

Description

preparing a time since disturbance map from stand age and fire data

Usage

```
makeTSD(
   year,
   firePolys = NULL,
   fireRaster = NULL,
   standAgeMap,
   lcc,
   cutoffForYoungAge = 15
)
```

Arguments

year	the year represented by standAge	
firePolys	list of spatialPolygon objects comprising annual fires. fireRaster will supersede firePolys if provided $% \left({{{\bf{n}}_{\rm{s}}}} \right)$	
fireRaster	a RasterLayer with values representing fire years	
standAgeMap	initial stand age map	
lcc	data.table with landcover values - landcoverDT	
cutoffForYoungA	ge	
	Numeric. Default is 15. This is the age below which the pixel is considered	
	"young" -> youngAge column will be 1 if age <= 15	

Value

a SpatRaster with values representing time since disturbance

multiplier

multiplier

Description

DESCRIPTION NEEDED

Usage

```
multiplier(size, minSize = 1000, baseMultiplier = 5)
```

Arguments

size	DESCRIPTION NEEDED
minSize	DESCRIPTION NEEDED
baseMultiplier	DESCRIPTION NEEDED

objNlminb

objNlminb

Description

Wrapper around stats::nlminb

Usage

objNlminb(x, objective, lower, upper, control, hvPW, ...)

Arguments

х	DESCRIPTION NEEDED
objective	objective function
lower	lower bounds on coefficients
upper	upper bounds on coefficients
control	DESCRIPTION NEEDED
h∨P₩	logical indicating whether the formula is piece-wise #IE added
	additional arguments passed to objective function

Value

DESCRIPTION NEEDED

oom

Description

Order of Magnitude

Usage

oom(x)

Arguments ×

a numeric

Value

the order of magnitude

plotBurnSummary Plot burn summary

Description

Create plot with subplots showing: a) area burned; b) number of fires; c) mean fire size.

Usage

```
plotBurnSummary(studyAreaName, climateScenario, outputDir, Nreps)
```

Arguments

studyAreaName	character string giving the study area name
climateScenario)
	character string specifying the name of a CIMP6 climate scenario, including SSP, formatted as in ClimateNA, using underscores as separator (e.g., 'CanESM5_SSP370').
outputDir	Path specifying the directory to which outputs figures/objects should be saved.
Nreps	the number of simulation replicates/run used to produce summary figures. NOTE: mclapply is used internally, so you should set options(mc.cores = nReps) to take advantage of parallel processing.

Value

list of file names corresponding to the figures and/or objects written to disk

plotCumulativeBurns Plot cumulative burn maps

Description

Plot cumulative burn maps

Usage

```
plotCumulativeBurns(
   studyAreaName,
   climateScenario,
   outputDir,
   Nreps,
   rasterToMatch
)
```

Arguments

studyAreaName	character string giving the study area name
climateScenario	
	character string specifying the name of a CIMP6 climate scenario, including SSP, formatted as in ClimateNA, using underscores as separator (e.g., 'CanESM5_SSP370').
outputDir	Path specifying the directory to which outputs figures/objects should be saved.
Nreps	the number of simulation replicates/run used to produce summary figures. NOTE: mclapply is used internally, so you should set options(mc.cores = nReps) to take advantage of parallel processing.
rasterToMatch	A RasterLayer objects to use as the template for all subsequent raster opera- tions (i.e., the one used throughout the simulation).

Value

list of file names corresponding to the figures and/or objects written to disk

a file path corresponding to the images and/or objects written to disk

plotHistoricFires Plot historic ignitions, escapes, and area burned

Description

Plot historic ignitions, escapes, and area burned

predictIgnition

Usage

```
plotHistoricFires(
   climateScenario,
   studyAreaName,
   outputDir,
   firePolys,
   ignitionPoints
)
```

Arguments

climateScenario	,
	character string specifying the name of a CIMP6 climate scenario, including SSP, formatted as in ClimateNA, using underscores as separator (e.g., 'CanESM5_SSP370').
studyAreaName	character string giving the study area name
outputDir	Path specifying the directory to which outputs figures/objects should be saved.
firePolys	A sf spatial polygons of historic fire burn areas, from the Canadian National Fire Database.
ignitionPoints	A sf spatial points of historic fire ignitions, from the Canadian National Fire Database.

Value

list of file names corresponding to the figures and/or objects written to disk

predictIgnition *Predictions from ignition model*

Description

Predictions from ignition model

Usage

```
predictIgnition(
  model,
  data,
  coefs,
  rescaleFactor,
  lambdaRescaleFactor,
  linkinv
)
```

Arguments

model	<pre>formula of fitted model (sim\$fireSense_IgnitionFitted[["formula"]][-2])</pre>	
data	data for prediction	
coefs	<pre>model coefficients (sim\$fireSense_IgnitionFitted\$coef)</pre>	
rescaleFactor	spatial rescaling factor when predicted and fitted data are at different scales. Calculaed as: (predResolution/fitResolution)^2	
lambdaRescaleFa	ctor	
	If the data for fitting has been sampled for pseudo-absences, this imposes a new baseline probability of fire occurrences, hence predictions need to be adjusted. If the original fire prob. is (total no. fires)/(total no. fires + total no. absences), and the fire probability imposed by sampling is (total no. fires)/(total no. fires + no. sampled pseudo-absences), to adjust predicted values, one needs to multiply them by (total no. fires + no. sampled pseudo-absences/(total no. fires + total no. absences)	
linkinv	<pre>family link function (sim\$fireSense_IgnitionFitted\$family\$linkinv)</pre>	

Value

vector of predicted values.

рw

Handling piecewise terms in a formula

Description

Handling piecewise terms in a formula

Usage

pw(variable, knot)

Arguments

variable	DESCRIPTION NEEDED
knot	DESCRIPTION NEEDED

Value

DESCRIPTION NEEDED

rasterFireBufferDT this is a wrapper to simplify caching of lapply with bufferForFireRaster. Years are iteratively processed by makeFireID.

Description

this is a wrapper to simplify caching of lapply with bufferForFireRaster. Years are iteratively processed by makeFireID.

Usage

```
rasterFireBufferDT(
  years,
  fireRaster,
  flammableRTM,
  bufferForFireRaster,
  areaMultiplier,
  minSize = 5000,
  verb = 1,
  cores = 1
)
```

Arguments

years	numeric fire years	
fireRaster	a SpatRaster with values representing fire years	
flammableRTM	a rasterToMatch with binary values where 1 represents flammable pixels, 0 nonflammable, and NA no data $% \left({{{\rm{A}}_{\rm{A}}}} \right)$	
bufferForFireRaster		
	buffer size used to group discrete patches of burned pixels as belonging to the same fire	
areaMultiplier	A scalar that will buffer areaMultiplier * fireSize	
minSize	The absolute minimum size of the buffer & non-buffer together. This will be imposed after a reaMultiplier.	
verb	Logical or numeric related to how much verbosity is printed. FALSE or 0 is none. TRUE or 1 is some. 2 is much more.	
cores	number of processor cores to use	

Value

a list of data.tables named by year, with cols ids, buffer, and pixelID

```
rasterFireSpreadPoints
```

create a list of annual ignition points based on fire raster

Description

create a list of annual ignition points based on fire raster

Usage

```
rasterFireSpreadPoints(fireBufferDT, flammableRTM)
```

Arguments

fireBufferDT a data.table with columns buffer (1 = burned), id (unique fire ID), and pixelID flammableRTM @template flammableRTM

Value

a list of sf point objects

rbetaBetween Generate random beta variates between 2 values and a mean

Description

Generate random beta variates between 2 values and a mean

Usage

rbetaBetween(n, 1, u, m, shape1, shape2 = NULL)

Arguments

n	number of observations. If $length(n) > 1$, the length is taken to be the number required.
1	scalar numeric for the lower bound
u	scalar numeric for the upper bound
m	scalar numeric for the mean
shape1	non-negative parameter of the Beta distribution
shape2	If provided, passed to rbeta. If not, m must be (i.e., the mean)

See Also

stats::rbeta

removeBufferedFiresOutsideRTM

remove buffered fires in fireBufferedListDT that are outside RTM

Description

remove buffered fires in fireBufferedListDT that are outside RTM

Usage

removeBufferedFiresOutsideRTM(fireBufferedDT, flammableRTM)

Arguments

fireBufferedDT	data.table containing indices for buffered annual fires
flammableRTM	a rasterToMatch with binary values where 1 represents flammable pixels, 0
	nonnanniaoic, and mA no uata

Value

fireBufferedDT excluding fires with indices (burned or unburned) outside flammableRTM

rescaleKnown2 rescale function no.2

Description

rescale function no.2

Usage

rescaleKnown2(x, minNew, maxNew, minOrig, maxOrig)

Arguments

Х	a vector to be rescaled
minNew	the minimum of the new range
maxNew	the max of the new range
minOrig	the minimum of the original data
maxOrig	the maximum of the original data

Value

the rescaled vector

runDEoptim

Description

Does the multiple cluster connections. This will only work if ssh keys are correctly made between machines (if using multiple machines).

Usage

```
runDEoptim(
  landscape,
  annualDTx1000,
  nonAnnualDTx1000,
  fireBufferedListDT,
  historicalFires,
  itermax,
  initialpop = NULL,
 NP = NULL,
  trace,
  strategy,
  cores = NULL,
  libPath = .libPaths()[1],
  logPath = tempfile(sprintf("fireSense_SpreadFit_%s_", format(Sys.time(),
    "%Y-%m-%d_%H%M%S")), fileext = ".log"),
  doObjFunAssertions = getOption("fireSenseUtils.assertions", TRUE),
  cachePath,
  iterStep = 25,
  lower,
  upper,
  mutuallyExclusive,
  FS_formula,
  objFunCoresInternal,
  covMinMax = covMinMax,
  tests = c("SNLL", "adTest"),
  maxFireSpread,
 Nreps,
  thresh = 550,
  .verbose,
  visualizeDEoptim,
  .plotSize = list(height = 1600, width = 2000)
)
DEoptimIterative(
  itermax,
  lower,
  upper,
```

runDEoptim

```
control,
 FS_formula,
 covMinMax,
  tests = c("SNLL", "adTest"),
 objFunCoresInternal,
 maxFireSpread,
 Nreps,
 visualizeDEoptim,
 cachePath,
 mutuallyExclusive,
 doObjFunAssertions = getOption("fireSenseUtils.assertions", TRUE),
  iterStep = 25,
  thresh = 550,
  .verbose,
  .plotSize = list(height = 1600, width = 2000)
)
```

Arguments

landscape	A RasterLayer which has the correct metadata associated with the pixelID and cells of other objects in this function call
annualDTx1000	A list of data.table objects. Each list element will be from 1 year, and it must be the same length as fireBufferedListDT and historicalFires. All covariates must be integers, and must be 1000x their actual values.
nonAnnualDTx100	00
	A list of data.table objects. Each list element must be named with a concatenated sequence of names from names(annualDTx1000), e.g., 1991_1992_1993. It should contain all the years in names(annualDTx1000). All covariates must be integers, and must be 1000x their actual values.
fireBufferedLis	tDT
	A list of data.table objects. It must be same length as annualDTx1000, with same names. Each element is a data.table with columns: buffTODO: IN-COMPLETE
historicalFires	5
	DESCRIPTION NEEDED
itermax	Passed to DEoptim.control
initialpop	DESCRIPTION NEEDED
NP	DESCRIPTION NEEDED
trace	Passed to DEoptim.control
strategy	Passed to DEoptim.control
cores	A numeric (for running on localhost only) or a character vector of machine names (including possibly "localhost"), where the length of the vector indicates how many cores should be used on that machine.
libPath	A character string indicating an R package library directory. This location must exist on each machine, though the function will make sure it does internally.

logPath	A character string indicating what file to write logs to. This dirname(logPath) must exist on each machine, though the function will make sure it does internally.	
doObjFunAsserti	ons	
	logical indicating whether to do assertions.	
cachePath	The cachePath to store cache in. Should likely be cachePath(sim)	
iterStep	Integer. Must be less than itermax. This will cause DEoptim to run the itermax iterations in ceiling(itermax / iterStep) steps. At the end of each step, this function will plot, optionally, the parameter histograms (if visualizeDEoptim is TRUE)	
lower	Passed to DEoptim	
upper	Passed to DEoptim	
mutuallyExclusi	ve	
	If there are any covariates, e.g., youngAge, that should be considered mutually exclusive, i.e., "if youngAge is non-zero, should vegPC2 be set to zero", then this can be done here. A named list, where the name of the list element must be a single covariate column name in either annualDTx1000 or nonAnnualDTx1000. The list content should be a "grep" pattern with which to match column names, e.g., "vegPC". The values of all column names that match the grep value will be set to 0, whenever the name of that list element is non-zero. Default is list("youngAge" = list("vegPC")), meaning that all columns with vegPC in their name will be set to zero wherever youngAge is non-zero.	
FS_formula	Passed to DEoptim	
objFunCoresInte	ernal	
-	DESCRIPTION NEEDED	
covMinMax	Passed to fireSenseUtils::.objfunSpreadFit	
tests	Passed to fireSenseUtils::.objfunSpreadFit	
maxFireSpread	Passed to fireSenseUtils::.objfunSpreadFit	
Nreps	Passed to fireSenseUtils::.objfunSpreadFit	
thresh	Threshold multiplier used in SNLL fire size (SNLL_FS) test. Default 550.	
.verbose	Passed to fireSenseUtils::.objfunSpreadFit	
visualizeDEoptim		
	Logical. If TRUE, then histograms will be made of DEoptim outputs.	
.plotSize	List specifying plot height and width, in pixels.	
control	DESCRIPTION NEEDED	

Value

DESCRIPTION NEEDED

stackAndExtract

Description

prepare covariate table with ignition year, fuel class, climate value, and land cover

Usage

stackAndExtract(years, fuel, LCC, climate, fires)

Arguments

years	character vector of fire years with FS notation e.g. year2002
fuel	raster brick of aggregated fuel classes
LCC	raster brick of aggregated LCC classes
climate	list of raster layers named by climate variable with raster layer names matching years
fires	list of spatial points representing annual ignitions

Value

a data.frame with cell numbers, ignitions, and covariates for each year

updateStackYearNames Update name of layers in a climate raster stack

Description

Update name of layers in a climate raster stack

Usage

```
updateStackYearNames(annualDataStack, desiredYears)
```

Arguments

annualDataStack

RasterStack

desiredYears character

visualizeDE

Description

Make histograms of DEoptim object pars

Usage

visualizeDE(DE, cachePath)

Arguments

DE	An object from a DEoptim call
cachePath	A cacheRepo to pass to showCache and loadFromCache if DE is missing.

Index

.doDataChecks (chk_duplicatedStartPixels), 16 .objFunIgnition, 3 .objFunIgnitionPW, 4 .objfunSpreadFit, 5 annualStackToDTx1000,7 bufferIgnitionPoints, 8 bufferToArea, 9 bufferToAreaRast, 11 buildCohortBurnHistory, 11 burnClassGenerator, 12 burnClassPredict (burnClassGenerator), 12 burnClassSummary (burnClassGenerator), 12 burnProbFromClass(burnClassGenerator), 12 calcYoungAge, 14 castCohortData, 15 chk_duplicatedStartPixels, 16 cleanUpSpreadFirePoints, 16 climateRasterToDataTable, 17 cohortsToFuelClasses, 18 compareMDC, 19

DEoptimIterative (runDEoptim), 38 dtReplaceNAwith0, 20

extractSpecial, 20

fireSenseUtils
 (fireSenseUtils-package), 3
fireSenseUtils-package, 3

getFirePoints_NFDB, 21
getFirePoints_NFDB_V2, 22
getFirePolygons, 22

harmonizeBufferAndPoints, 23 harmonizeFireData, 24 logistic2p(logistic4p), 25 logistic3p (logistic4p), 25 logistic4p, 25 logistic5p (logistic4p), 25 makeFireIDs, 25 makeLandcoverDT, 26 makeLociList, 27 makeMutuallyExclusive, 28 makeRastersFromCD, 28 makeTSD, 29 multiplier, 30 multiplier(), 10 objNlminb, 30 oom, 31 plotBurnSummary, 31 plotCumulativeBurns, 32 plotHistoricFires, 32 predictIgnition, 33 prepInputs, 21, 22 prepInputs(), 23 pw, 34 rasterFireBufferDT, 35 rasterFireSpreadPoints, 36 rbetaBetween, 36 removeBufferedFiresOutsideRTM, 37 rescaleKnown2, 37 runDEoptim, 38 stackAndExtract, 41 updateStackYearNames, 41

visualizeDE, 42