--- title: "`libcbmr` usage examples" author: "Scott Morken and Alex Chubaty" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{`libcbmr` usage examples} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", echo = TRUE, eval = FALSE ) ``` # Usage examples Additional examples (may not be fully updated and working) can be found here: - - - ## Example 1 Adapted from: ```{r usage-example1, eval = FALSE} library(reticulate) library(libcbmr) library(plyr) py_use_env("r-reticulate") cbm_exn_model <- libcbm_cbm_exn_model() libcbm_resources <- libcbm_libcbm_resources() model_variables <- libcbm_model_variables() output_processor <- libcbm_output_processor() spinup <- function(spinup_input) { # with config_path NULL default CBM-CFS3 derived parameters are used with(cbm_exn_model$initialize(config_path = NULL) %as% cbm, { # the spinup function creates the t=0 cbm_vars # but you can save and or load cbm_vars for each # timestep at the end of spinup point cbm_vars <- cbm$spinup(spinup_input) return(cbm_vars) }) } step <- function(cbm_vars) { with(cbm_exn_model$initialize(config_path = NULL) %as% cbm, { cbm_vars <- cbm$step(cbm_vars) return(cbm_vars) }) } net_increments <- read.csv( file.path( libcbm_resources$get_test_resources_dir(), "cbm_exn_net_increments", "net_increments.csv" ) ) colnames(net_increments) <- c("age", "merch_inc", "foliage_inc", "other_inc") stand_increments <- NULL n_stands <- 1000 for (i in 0:(n_stands - 1)) { ## indexing in python starts at zero copied_increments <- data.frame(net_increments) copied_increments <- cbind(data.frame(row_idx = i), copied_increments) stand_increments <- rbind(stand_increments, copied_increments) } spinup_parameters <- data.frame( age = sample(0L:60L, n_stands, replace = TRUE), area = rep(1.0, n_stands), delay = rep(0L, n_stands), return_interval = rep(125L, n_stands), min_rotations = rep(10L, n_stands), max_rotations = rep(30L, n_stands), spatial_unit_id = rep(17L, n_stands), # Ontario/Mixedwood plains species = rep(20L, n_stands), # red pine mean_annual_temperature = rep(2.55, n_stands), historical_disturbance_type = rep(1L, n_stands), last_pass_disturbance_type = rep(1L, n_stands) ) ## run spinup cbm_vars <- spinup( dict( parameters = spinup_parameters, increments = stand_increments ) ) ## run 50 timesteps out_processor <- output_processor$ModelOutputProcessor() for (t in 1:50) { cbm_vars$parameters$mean_annual_temperature <- 2.55 cbm_vars$parameters$disturbance_type <- sample( c(0L, 1L, 4L), n_stands, replace = TRUE, prob = c(0.98, 0.01, 0.01) ) # look up the original increments and join to the current stand age step_increments <- join( x = data.frame(age = cbm_vars$state$age), y = net_increments, by = "age" ) # since some of the ages are out of range for the defined # data, set the increments to 0 step_increments$merch_inc[is.na(step_increments$merch_inc)] <- 0 step_increments$foliage_inc[is.na(step_increments$foliage_inc)] <- 0 step_increments$other_inc[is.na(step_increments$other_inc)] <- 0 # assign the merged increments to the parameters data.frame cbm_vars$parameters$merch_inc <- step_increments$merch_inc cbm_vars$parameters$foliage_inc <- step_increments$foliage_inc cbm_vars$parameters$other_inc <- step_increments$other_inc cbm_vars <- step(cbm_vars) out_processor$append_results(t, model_variables$ModelVariables$from_pandas(cbm_vars)) } results <- out_processor$get_results() ## convert results to R data.frames pools <- results["pools"]$to_pandas() flux <- results["flux"]$to_pandas() parameters <- results["parameters"]$to_pandas() state <- results["state"]$to_pandas() pools state ```