libcbmr usage examples

Usage examples

Additional examples (may not be fully updated and working) can be found here:

Example 1

Adapted from: https://github.com/cat-cfs/libcbm_py/blob/2.x/examples/cbm_exn/cbm_exn_example.rmd

library(reticulate)
library(libcbmr)
library(plyr)

py_use_env("r-reticulate")

cbm_exn_model <- libcbm_cbm_exn_model()
libcbm_resources <- libcbm_libcbm_resources()
model_variables <- libcbm_model_variables()
output_processor <- libcbm_output_processor()

spinup <- function(spinup_input) {
  # with config_path NULL default CBM-CFS3 derived parameters are used
  with(cbm_exn_model$initialize(config_path = NULL) %as% cbm, {
    # the spinup function creates the t=0 cbm_vars
    # but you can save and or load cbm_vars for each
    # timestep at the end of spinup point
    cbm_vars <- cbm$spinup(spinup_input)
    return(cbm_vars)
  })
}

step <- function(cbm_vars) {
  with(cbm_exn_model$initialize(config_path = NULL) %as% cbm, {
    cbm_vars <- cbm$step(cbm_vars)
    return(cbm_vars)
  })
}

net_increments <- read.csv(
  file.path(
    libcbm_resources$get_test_resources_dir(),
    "cbm_exn_net_increments",
    "net_increments.csv"
  )
)

colnames(net_increments) <- c("age", "merch_inc", "foliage_inc", "other_inc")
stand_increments <- NULL
n_stands <- 1000
for (i in 0:(n_stands - 1)) { ## indexing in python starts at zero
  copied_increments <- data.frame(net_increments)
  copied_increments <- cbind(data.frame(row_idx = i), copied_increments)
  stand_increments <- rbind(stand_increments, copied_increments)
}

spinup_parameters <- data.frame(
  age = sample(0L:60L, n_stands, replace = TRUE),
  area = rep(1.0, n_stands),
  delay = rep(0L, n_stands),
  return_interval = rep(125L, n_stands),
  min_rotations = rep(10L, n_stands),
  max_rotations = rep(30L, n_stands),
  spatial_unit_id = rep(17L, n_stands), # Ontario/Mixedwood plains
  species = rep(20L, n_stands), # red pine
  mean_annual_temperature = rep(2.55, n_stands),
  historical_disturbance_type = rep(1L, n_stands),
  last_pass_disturbance_type = rep(1L, n_stands)
)

## run spinup
cbm_vars <- spinup(
  dict(
    parameters = spinup_parameters,
    increments = stand_increments
  )
)

## run 50 timesteps
out_processor <- output_processor$ModelOutputProcessor()
for (t in 1:50) {
  cbm_vars$parameters$mean_annual_temperature <- 2.55
  cbm_vars$parameters$disturbance_type <- sample(
    c(0L, 1L, 4L), n_stands,
    replace = TRUE, prob = c(0.98, 0.01, 0.01)
  )

  # look up the original increments and join to the current stand age
  step_increments <- join(
    x = data.frame(age = cbm_vars$state$age),
    y = net_increments,
    by = "age"
  )

  # since some of the ages are out of range for the defined
  # data, set the increments to 0
  step_increments$merch_inc[is.na(step_increments$merch_inc)] <- 0
  step_increments$foliage_inc[is.na(step_increments$foliage_inc)] <- 0
  step_increments$other_inc[is.na(step_increments$other_inc)] <- 0

  # assign the merged increments to the parameters data.frame
  cbm_vars$parameters$merch_inc <- step_increments$merch_inc
  cbm_vars$parameters$foliage_inc <- step_increments$foliage_inc
  cbm_vars$parameters$other_inc <- step_increments$other_inc
  cbm_vars <- step(cbm_vars)

  out_processor$append_results(t, model_variables$ModelVariables$from_pandas(cbm_vars))
}

results <- out_processor$get_results()

## convert results to R data.frames
pools <- results["pools"]$to_pandas()
flux <- results["flux"]$to_pandas()
parameters <- results["parameters"]$to_pandas()
state <- results["state"]$to_pandas()

pools

state