libcbmr
usage examplesAdditional examples (may not be fully updated and working) can be found here:
Adapted from: https://github.com/cat-cfs/libcbm_py/blob/2.x/examples/cbm_exn/cbm_exn_example.rmd
library(reticulate)
library(libcbmr)
library(plyr)
py_use_env("r-reticulate")
## These are python-side high level models and structures being read-in
cbm_exn_model <- libcbm_cbm_exn_model()
libcbm_resources <- libcbm_libcbm_resources()
model_variables <- libcbm_model_variables()
output_processor <- libcbm_output_processor()
##TODO
## This function is making a cbm object (confirm?). This object will be used as t=0 in
## annual calculations
spinup <- function(spinup_input) {
## with config_path NULL (line 112) default CBM-CFS3 derived parameters are
## used, assign the config path here for the cbm_exn_model$initialize method.
## That will set a path from where all of the parameters will be read from,
## and if it's not specified it will pull these parameters from
## https://github.com/cat-cfs/libcbm_py/tree/main/libcbm/resources/cbm_exn if
## you make your own directory with these same files you will override the
## defaults.
## GitHub location contains:
## decay_parameters.csv - this is a match to
## outDefaults$cbmData@decayParameters except that the
## outDefaults$cbmData@decayParameters$SoilPoolID (numbers 1 to 11) are named
## in decay_parameters.csv.
## disturburbance_matrix_association.csv(12753X4) - this is a match to
## outDefaults$cbmData@disturbanceMatrixAssociation (6082X3) plus one column
## named "sw_hw" associating a sw or hw to each diturbance_matrix_id
##TODO Scott? why is csv not 2X the cbmData?
## disturbance_matrix_value.csv (14793X4) - this is a match
## outDefaults$cbmData@disturbanceMatrixValues (21339X4) except that instead
## of "ids" (source_pool_id sink_pool_id), the source_pool and sink_pool are
## named in disturbance_matrix_value.csv.
## flux.json file does not have an equivalent in sim$cbmData as it defines the
## fluxes (from where to where). It is probably built in the model_definition
## python module and into the c++ functions in spadesCBM (##TODO Scott? is
## this right?)
## pools.json is defined in CBMutils::.pooldef, right now pools.json does not
## have a softwood/hardwood split (fewer pools) then CBMutils::.pooldef, which
## has the CBM-CFS3 pools.
## root_parameters.csv (1X8) - this partly matches
## myDefaults$cbmData@rootParameters (48X7). root_parameters.csv has one line
## instead of repeating the same line for all SPUs,
## biomass_to_carbon_rate (constant at 0.5) which is here
## myDefaults$cbmData@biomassToCarbonRate in spadesCBM (column names are a bit
## different too)
## SpatialUnitID rb_hw_a rb_sw_a rb_hw_b frp_a frp_b frp_c versus
## id hw_a sw_a hw_b frp_a frp_b frp_c biomass_to_carbon_rate
## slow_mixing_rate.csv - this matches
## myDefaults$cbmData@slowAGtoBGTransferRate (which is a matrix not a data
## frame). This value does not vary across Canada.
## species.csv (194X6) - the information on this table is partly in the
## canfi_species.csv we provide with the CBM_vol2biomass module. It is not
## quite the same. Here are the coumn names and I don't know if they match:
## species_id species_name genus_id genus_name forest_type_id forest_type_name
## versus
## canfi_species,genus,species,name,forest_type_id
##TODO we might need to check that species match or are we going to inegrate
##these CBM species into the spacies look-up table in LandR?
## turnover_parameters.csv (96X12) - this almost matches this file
## spadesCBMrunsSK$cbmData@turnoverRates (15X13) except that the .csv has
## spatial_unit_id, while cbmData@turnoverRates has EcoBoundaryID, .csv has a
## separate column for sw_hw, and cbmData@turnoverRates has foliage and branch
## columns for each sw and hw.
with(cbm_exn_model$initialize(config_path = NULL) %as% cbm, {
# the spinup function creates the t=0 cbm_vars
# but you can save and or load cbm_vars for each
# timestep at the end of spinup point
cbm_vars <- cbm$spinup(spinup_input)
return(cbm_vars)
})
}
## working through all processes
step <- function(cbm_vars) {
with(cbm_exn_model$initialize(config_path = NULL) %as% cbm, {
cbm_vars <- cbm$step(cbm_vars)
return(cbm_vars)
})
}
## in this example the increments are one curve (1-17 years old) with Merch
## Foliage Other (all softwood)
net_increments <- read.csv(
file.path(
libcbm_resources$get_test_resources_dir(),
"cbm_exn_net_increments",
"net_increments.csv"
)
)
colnames(net_increments) <- c("age", "merch_inc", "foliage_inc", "other_inc")
stand_increments <- NULL
n_stands <- 1000
for (i in 0:(n_stands - 1)) { ## indexing in python starts at zero
copied_increments <- data.frame(net_increments)
copied_increments <- cbind(data.frame(row_idx = i), copied_increments)
stand_increments <- rbind(stand_increments, copied_increments)
}
spinup_parameters <- data.frame(
age = sample(0L:60L, n_stands, replace = TRUE),
area = rep(1.0, n_stands),
delay = rep(0L, n_stands),
return_interval = rep(125L, n_stands),
min_rotations = rep(10L, n_stands),
max_rotations = rep(30L, n_stands),
spatial_unit_id = rep(17L, n_stands), # Ontario/Mixedwood plains
species = rep(20L, n_stands), # red pine
mean_annual_temperature = rep(2.55, n_stands),
historical_disturbance_type = rep(1L, n_stands),
last_pass_disturbance_type = rep(1L, n_stands)
)
## run spinup
cbm_vars <- spinup(
## this is an R function that creates a python dictionary
dict(
parameters = spinup_parameters,
increments = stand_increments
)
)
## run 50 timesteps
##TODO Not sure what this does - speculating: the python-side puts all the
##results together and this goes and gets them there?
out_processor <- output_processor$ModelOutputProcessor()
for (t in 1:50) {
cbm_vars$parameters$mean_annual_temperature <- 2.55
cbm_vars$parameters$disturbance_type <- sample(
c(0L, 1L, 4L), n_stands,
replace = TRUE, prob = c(0.98, 0.01, 0.01)
)
# look up the original increments and join to the current stand age
step_increments <- join(
x = data.frame(age = cbm_vars$state$age),
y = net_increments,
by = "age"
)
# since some of the ages are out of range for the defined
# data, set the increments to 0
step_increments$merch_inc[is.na(step_increments$merch_inc)] <- 0
step_increments$foliage_inc[is.na(step_increments$foliage_inc)] <- 0
step_increments$other_inc[is.na(step_increments$other_inc)] <- 0
# assign the merged increments to the parameters data.frame
cbm_vars$parameters$merch_inc <- step_increments$merch_inc
cbm_vars$parameters$foliage_inc <- step_increments$foliage_inc
cbm_vars$parameters$other_inc <- step_increments$other_inc
cbm_vars <- step(cbm_vars)
out_processor$append_results(t, model_variables$ModelVariables$from_pandas(cbm_vars))
}
results <- out_processor$get_results()
## convert results to R data.frames
pools <- results["pools"]$to_pandas()
flux <- results["flux"]$to_pandas()
parameters <- results["parameters"]$to_pandas()
state <- results["state"]$to_pandas()
pools
state