Package 'rgeos'

Title: Interface to Geometry Engine - Open Source ('GEOS')
Description: Interface to Geometry Engine - Open Source ('GEOS') using the C 'API' for topology operations on geometries. Please note that 'rgeos' will be retired during October 2023, plan transition to 'sf' or 'terra' functions using 'GEOS', or the 'geos' package, at your earliest convenience (see <https://r-spatial.org/r/2023/05/15/evolution4.html> and earlier blogs for guidance). The 'GEOS' library is external to the package, and, when installing the package from source, must be correctly installed first. Windows and Mac Intel OS X binaries are provided on 'CRAN'. ('rgeos' >= 0.5-1): Up to and including 'GEOS' 3.7.1, topological operations succeeded with some invalid geometries for which the same operations fail from and including 'GEOS' 3.7.2. The 'checkValidity=' argument defaults and structure have been changed, from default FALSE to integer default '0L' for 'GEOS' < 3.7.2 (no check), '1L' 'GEOS' >= 3.7.2 (check and warn). A value of '2L' is also provided that may be used, assigned globally using 'set_RGEOS_CheckValidity(2L)', or locally using the 'checkValidity=2L' argument, to attempt zero-width buffer repair if invalid geometries are found. The previous default (FALSE, now '0L') is fastest and used for 'GEOS' < 3.7.2, but will not warn users of possible problems before the failure of topological operations that previously succeeded. From 'GEOS' 3.8.0, repair of geometries may also be attempted using 'gMakeValid()', which may, however, return a collection of geometries of different types.
Authors: Roger Bivand [cre, aut] , Colin Rundel [aut], Edzer Pebesma [ctb], Rainer Stuetz [ctb], Karl Ove Hufthammer [ctb], Patrick Giraudoux [ctb], Martin Davis [cph, ctb], Sandro Santilli [cph, ctb]
Maintainer: Roger Bivand <[email protected]>
License: GPL (>= 2)
Version: 0.6-4
Built: 2024-11-02 05:12:54 UTC
Source: https://github.com/cran/rgeos

Help Index


Converts a bounding box into a SpatialPolygons object.

Description

Converts a bounding box into a SpatialPolygons object.

Usage

bbox2SP(n,s,w,e,bbox=NA,proj4string=CRS("+init=epsg:4326"))

Arguments

n

the top north latitude

s

the bottom south latitude

w

the most western longitude

e

the most eastern longitude

bbox

a bounding box 2 x 2 matrix as produced by bbox

proj4string

a coordinate reference system as defined in CRS

Details

This function converts a set of coordinates limiting a bounding box into a SpatialPolygons. It can be used for instance to clip a subset of a larger spatial object (e.g. using gIntersection)

Value

An object of SpatialPolygons class.

Examples

library(sp)
run <- FALSE
if (require(rgdal, quietly=TRUE)) run <- TRUE
if (run) {
cities <- readOGR(dsn=system.file("vectors", package = "rgdal")[1], layer="cities")
n<-75
s<-30
w<--40
e<-32
myPoly<-bbox2SP(n,s,e,w)
}
if (run) {
plot(cities)
plot(myPoly,border="red",add=TRUE)
}
if (run) {
bb<-bbox(cities)
myPoly<-bbox2SP(bbox=bb,proj4string=CRS(proj4string(cities)))
plot(myPoly,add=TRUE,border="blue")
}

Area of Geometry

Description

Calculates the area of the given geometry.

Usage

gArea(spgeom, byid=FALSE)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

Value

Returns the area of the geometry in the units of the current projection. By definition non-[MULTI]POLYGON geometries have an area of 0. The area of a POLYGON is the area of its shell less the area of any holes. Note that this value may be different from the area slot of the Polygons class as this value does not subtract the area of any holes in the geometry.

Author(s)

Roger Bivand & Colin Rundel

See Also

gLength

Examples

gArea(readWKT("POINT(1 1)"))
	gArea(readWKT("LINESTRING(0 0,1 1,2 2)"))
	gArea(readWKT("LINEARRING(0 0,3 0,3 3,0 3,0 0)"))
	
	
	p1 = readWKT("POLYGON((0 0,3 0,3 3,0 3,0 0))")
	p2 = readWKT("POLYGON((0 0,3 0,3 3,0 3,0 0),(1 1,2 1,2 2,1 2,1 1))")
	
	gArea(p1)
	p1@polygons[[1]]@area
	
	gArea(p2)
	p2@polygons[[1]]@area

Boundary of Geometry

Description

Function for determinging the Boundary of the given geometry as defined by SFS Section 2.1.13.1

Usage

gBoundary(spgeom, byid=FALSE, id = NULL)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

id

Character vector defining id labels for the resulting geometries, if unspecified returned geometries will be labeled based on their parent geometries' labels.

Value

Depending of the class of the spgeom the returned results will differ.

Based on the documentation of JTS (on which GEOS is based) the following outputs are expected:

Point empty GeometryCollection
MultiPoint empty GeometryCollection
LineString if closed: empty MultiPoint if not closed: MultiPoint containing the two endpoints.
MultiLineString MultiPoint obtained by applying the Mod-2 rule to the boundaries of the element LineStrings
LinearRing empty MultiPoint
Polygon MultiLineString containing the LinearRings of the shell and holes, in that order (SFS 2.1.10)
MultiPolygon MultiLineString containing the LinearRings for the boundaries of the element polygons, in the same order as they occur in the MultiPolygon (SFS 2.1.12/JTS)
GeometryCollection The boundary of an arbitrary collection of geometries whose interiors are disjoint consist of geometries drawn from the boundaries of the element geometries by application of the Mod-2 rule (SFS Section 2.1.13.1)

The mod-2 rule states that for a multiline a point is on the boundary if and only if it on the boundary of an odd number of subgeometries of the multiline (See example below).

Author(s)

Roger Bivand & Colin Rundel

See Also

gCentroid gConvexHull gEnvelope gPointOnSurface

Examples

x = readWKT("POLYGON((0 0,10 0,10 10,0 10,0 0))")
b = gBoundary(x)

plot(x,col='black')
plot(b,col='red',lwd=3,add=TRUE)

# mod-2 rule example
x1 = readWKT("MULTILINESTRING((2 2,2 0),(2 2,0 2))")
x2 = readWKT("MULTILINESTRING((2 2,2 0),(2 2,0 2),(2 2,4 2))")
x3 = readWKT("MULTILINESTRING((2 2,2 0),(2 2,0 2),(2 2,4 2),(2 2,2 4))")
x4 = readWKT("MULTILINESTRING((2 2,2 0),(2 2,0 2),(2 2,4 2),(2 2,2 4),(2 2,4 4))")

b1 = gBoundary(x1)
b2 = gBoundary(x2)
b3 = gBoundary(x3)
b4 = gBoundary(x4)

par(mfrow=c(2,2))
plot(x1); plot(b1,pch=16,col='red',add=TRUE)
plot(x2); plot(b2,pch=16,col='red',add=TRUE)
plot(x3); plot(b3,pch=16,col='red',add=TRUE)
plot(x4); plot(b4,pch=16,col='red',add=TRUE)

Centroid of Geometry

Description

Function calculates the centroid of the given geometry.

Usage

gCentroid(spgeom, byid=FALSE, id = NULL)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

id

Character vector defining id labels for the resulting geometries, if unspecified returned geometries will be labeled based on their parent geometries' labels.

Details

Returns a SpatialPoints object of the centroid(s) for spgeom.

Author(s)

Roger Bivand & Colin Rundel

See Also

gBoundary gConvexHull gEnvelope gPointOnSurface

Examples

x = readWKT(paste("GEOMETRYCOLLECTION(POLYGON((0 0,10 0,10 10,0 10,0 0)),",
 "POLYGON((15 0,25 15,35 0,15 0)))"))

# Centroids of both the square and circle independently
c1 = gCentroid(x,byid=TRUE) 
# Centroid of square and circle together
c2 = gCentroid(x)

plot(x)
plot(c1,col='red',add=TRUE)
plot(c2,col='blue',add=TRUE)

Geometry Relationships - Contains and Within

Description

Functions for testing whether one geometry contains or is contained within another geometry

Usage

gContains(spgeom1, spgeom2 = NULL, byid = FALSE, prepared=TRUE,
 returnDense=TRUE, STRsubset=FALSE, checkValidity=FALSE)
gContainsProperly(spgeom1, spgeom2 = NULL, byid = FALSE, returnDense=TRUE,
 checkValidity=FALSE)
gCovers(spgeom1, spgeom2 = NULL, byid = FALSE, returnDense=TRUE, checkValidity=FALSE)
gCoveredBy(spgeom1, spgeom2 = NULL, byid = FALSE, returnDense=TRUE, checkValidity=FALSE)
gWithin(spgeom1, spgeom2 = NULL, byid = FALSE, returnDense=TRUE, checkValidity=FALSE)

Arguments

spgeom1, spgeom2

sp objects as defined in package sp. If spgeom2 is NULL then spgeom1 is compared to itself.

byid

Logical vector determining if the function should be applied across ids (TRUE) or the entire object (FALSE) for spgeom1 and spgeom2

prepared

Logical determining if prepared geometry (spatially indexed) version of the GEOS function should be used. In general prepared geometries should be faster than the alternative.

returnDense

default TRUE, if false returns a list of the length of spgeom1 of integer vectors listing the 1:length(spgeom2) indices which would be TRUE in the dense logical matrix representation; useful when the sizes of the byid=TRUE returned matrix is very large and it is sparse; essential when the returned matrix would be too large

checkValidity

default FALSE; error meesages from GEOS do not say clearly which object fails if a topology exception is encountered. If this argument is TRUE, gIsValid is run on each in turn in an environment in which object names are available. If objects are invalid, this is reported and those affected are named

STRsubset

logical argument for future use

Value

gContains returns TRUE if none of the point of spgeom2 is outside of spgeom1 and at least one point of spgeom2 falls within spgeom1.

gContainsProperly returns TRUE under the same conditions as gContains with the additional requirement that spgeom2 does not intersect with the boundary of spgeom1. As such any given geometry will Contain itself but will not ContainProperly itself.

gCovers returns TRUE if no point in spgeom2 is outside of spgeom1. This is slightly different from gContains as it does not require a point within spgeom1 which can be an issue as boundaries are not considered to be "within" a geometry, see gBoundary for specifics of geometry boundaries.

gCoveredBy is the converse of gCovers and is equivalent to swapping spgeom1 and spgeom2.

gWithin is the converse of gContains and is equivalent to swapping spgeom1 and spgeom2.

Note

Error messages from GEOS, in particular topology exceptions, report 0-based object order, so geom 0 is spgeom1, and geom 1 is spgeom2.

Author(s)

Roger Bivand & Colin Rundel

References

Helpful information on the subtle differences between these functions: http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html

See Also

gCrosses gDisjoint gEquals gEqualsExact gIntersects gOverlaps gRelate gTouches

Examples

l1 = readWKT("LINESTRING(0 3,1 1,2 2,3 0)")
	l2 = readWKT("LINESTRING(1 3.5,3 3,2 1)")
	l3 = readWKT("LINESTRING(1 3.5,3 3,4 1)")
	
	pt1 = readWKT("MULTIPOINT(1 1,3 0)")
	pt2 = readWKT("MULTIPOINT(0 3,3 0)")
	pt3 = readWKT("MULTIPOINT(1 1,2 2,3 1)")
	
	p1 = readWKT("POLYGON((0 0,0 2,1 3.5,3 3,4 1,3 0,0 0))")
	p2 = readWKT("POLYGON((1 1,1 2,2 2,2 1,1 1))")

	
	par(mfrow=c(2,3))
	plot(l1,col='blue');plot(pt1,add=TRUE,pch=16)
	title(paste("Contains:",gContains(l1,pt1),
				"\nContainsProperly:",gContainsProperly(l1,pt1),
				"\nCovers:",gCovers(l1,pt1)))
	
	plot(l1,col='blue');plot(pt2,add=TRUE,pch=16)
	title(paste("Contains:",gContains(l1,pt2),
				"\nContainsProperly:",gContainsProperly(l1,pt2),
				"\nCovers:",gCovers(l1,pt2)))
	
	plot(p1,col='blue',border='blue');plot(pt3,add=TRUE,pch=16)
	title(paste("Contains:",gContains(p1,pt3),
				"\nContainsProperly:",gContainsProperly(p1,pt3),
				"\nCovers:",gCovers(p1,pt3)))
	
	plot(p1,col='blue',border='blue');plot(l2,lwd=2,add=TRUE,pch=16)
	title(paste("Contains:",gContains(p1,l2),
				"\nContainsProperly:",gContainsProperly(p1,l2),
				"\nCovers:",gCovers(p1,l2)))

	plot(p1,col='blue',border='blue');plot(l3,lwd=2,add=TRUE,pch=16)
	title(paste("Contains:",gContains(p1,l3),
				"\nContainsProperly:",gContainsProperly(p1,l3),
				"\nCovers:",gCovers(p1,l3)))

	plot(p1,col='blue',border='blue');plot(p2,col='black',add=TRUE,pch=16)
	title(paste("Contains:",gContains(p1,p2),
				"\nContainsProperly:",gContainsProperly(p1,p2),
				"\nCovers:",gCovers(p1,p2)))

Convex Hull of Geometry

Description

Function produces the Convex Hull of the given geometry, the smallest convex polygon that contains all subgeometries

Usage

gConvexHull(spgeom, byid=FALSE, id = NULL)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

id

Character vector defining id labels for the resulting geometries, if unspecified returned geometries will be labeled based on their parent geometries' labels.

Details

Returns the convex hull as a SpatialPolygons object.

Author(s)

Roger Bivand & Colin Rundel

See Also

gBoundary gCentroid gEnvelope gPointOnSurface

Examples

x = readWKT(paste("POLYGON((0 40,10 50,0 60,40 60,40 100,50 90,60 100,60",
 "60,100 60,90 50,100 40,60 40,60 0,50 10,40 0,40 40,0 40))"))

ch = gConvexHull(x)

plot(x,col='blue',border='blue')
plot(ch,add=TRUE)

Coverage Union

Description

GEOSCoverageUnion is an optimized union algorithm for polygonal inputs that are correctly noded and do not overlap. It will not generate an error (return NULL) for inputs that do not satisfy this constraint.

Usage

gCoverageUnion(spgeom, byid=FALSE, id = NULL)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

id

Character vector defining id labels for the resulting geometries, if unspecified returned geometries will be labeled based on their parent geometries' labels.

Author(s)

Roger Bivand

See Also

gUnaryUnion

Examples

run <- FALSE
if (require(maptools)) run <- TRUE
if (run) {
    nc1 <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1],
        proj4string=CRS("+proj=longlat +datum=NAD27"))
}
if (run) {
    print(system.time(oU <- gUnionCascaded(nc1)))
    if (version_GEOS0() >= "3.8.0") {
        print(system.time(oCU <- gCoverageUnion(nc1)))
    }
}

Geometry Relationships - Crosses and Overlaps

Description

Functions for testing whether geometries share some but not all interior points

Usage

gCrosses(spgeom1, spgeom2 = NULL, byid = FALSE, returnDense=TRUE,
 checkValidity=FALSE)
	gOverlaps(spgeom1, spgeom2 = NULL, byid = FALSE, returnDense=TRUE,
 checkValidity=FALSE)

Arguments

spgeom1, spgeom2

sp objects as defined in package sp. If spgeom2 is NULL then spgeom1 is compared to itself.

byid

Logical vector determining if the function should be applied across ids (TRUE) or the entire object (FALSE) for spgeom1 and spgeom2

returnDense

default TRUE, if false returns a list of the length of spgeom1 of integer vectors listing the 1:length(spgeom2) indices which would be TRUE in the dense logical matrix representation; useful when the sizes of the byid=TRUE returned matrix is very large and it is sparse; essential when the returned matrix would be too large

checkValidity

default FALSE; error meesages from GEOS do not say clearly which object fails if a topology exception is encountered. If this argument is TRUE, gIsValid is run on each in turn in an environment in which object names are available. If objects are invalid, this is reported and those affected are named

Value

gCrosses returns TRUE when the geometries share some but not all interior points, and the dimension of the intersection is less than that of at least one of the geometries.

gOverlaps returns TRUE when the geometries share some but not all interior points, and the intersection has the same dimension as the geometries themselves.

Note

Error messages from GEOS, in particular topology exceptions, report 0-based object order, so geom 0 is spgeom1, and geom 1 is spgeom2.

Author(s)

Roger Bivand & Colin Rundel

See Also

gContains gContainsProperly gCovers gCoveredBy gDisjoint gEquals gEqualsExact gIntersects gRelate gTouches gWithin

Examples

l1 = readWKT("LINESTRING(0 3,1 1,2 2,3 0)")
	l2 = readWKT("LINESTRING(0 0.5,1 1,2 2,3 2.5)")
	l3 = readWKT("LINESTRING(1 3,1.5 1,2.5 2)")
	
	pt1 = readWKT("MULTIPOINT(1 1,3 0)")
	pt2 = readWKT("MULTIPOINT(1 1,3 0,1 2)")

	p1 = readWKT("POLYGON((0 0,0 2,1 3.5,3 3,4 1,3 0,0 0))")
	p2 = readWKT("POLYGON((2 2,3 4,4 1,4 0,2 2))")
	
	par(mfrow=c(2,3))
	plot(l1,col='blue');plot(pt1,add=TRUE,pch=16)
	title(paste("Crosses:",gCrosses(l1,pt1),
				"\nOverlaps:",gOverlaps(l1,pt1)))
	
	plot(l1,col='blue');plot(pt2,add=TRUE,pch=16)
	title(paste("Crosses:",gCrosses(l1,pt2),
				"\nOverlaps:",gOverlaps(l1,pt2)))
				
	plot(l1,col='blue');plot(l2,add=TRUE)
	title(paste("Crosses:",gCrosses(l1,l2),
				"\nOverlaps:",gOverlaps(l1,l2)))
				
	plot(l1,col='blue');plot(l3,add=TRUE)
	title(paste("Crosses:",gCrosses(l1,l3),
				"\nOverlaps:",gOverlaps(l1,l3)))
				
	plot(p1,border='blue',col='blue');plot(l1,add=TRUE)
	title(paste("Crosses:",gCrosses(p1,l1),
				"\nOverlaps:",gOverlaps(p1,l1)))

	plot(p1,border='blue',col='blue');plot(p2,add=TRUE)
	title(paste("Crosses:",gCrosses(p1,p2),
				"\nOverlaps:",gOverlaps(p1,p2)))

Compute Delaunay triangulation between points

Description

Function to compute the Delaunay triangulation between points; only available for GEOS >= 3.4.0.

Usage

gDelaunayTriangulation(spgeom, tolerance=0.0, onlyEdges=FALSE)

Arguments

spgeom

sp points object as defined in package sp

tolerance

Numerical tolerance value to be used in triangulation

onlyEdges

Logical, default returns triangles as polygons, if TRUE, returns a SpatialLines object with a single MULTILINESTRING

Details

When onlyEdges is TRUE, the SpatialLines object may be de-merged to identify the input points that are touched by each edge, making it possible to identify spatial neighbours.

Value

Either a SpatialPolygons object or a SpatialLines object containing a single Lines object of the undirected edges in the triangulation.

Author(s)

Roger Bivand

References

https://en.wikipedia.org/wiki/Delaunay_triangulation

Examples

if (version_GEOS0() > "3.4.0") {
library(sp)
data(meuse)
coordinates(meuse) <- c("x", "y")
plot(gDelaunayTriangulation(meuse))
points(meuse)
out <- gDelaunayTriangulation(meuse, onlyEdges=TRUE)
lns <- slot(slot(out, "lines")[[1]], "Lines")
out1 <- SpatialLines(lapply(seq(along=lns), function(i) Lines(list(lns[[i]]),
 ID=as.character(i))))
out2 <- lapply(1:length(out1), function(i) which(gTouches(meuse, out1[i],
 byid=TRUE)))
out3 <- do.call("rbind", out2)
o <- order(out3[,1], out3[,2])
out4 <- out3[o,]
out5 <- data.frame(from=out4[,1], to=out4[,2], weight=1)
head(out5)
## Not run: 
if (require(spdep)) {
class(out5) <- c("spatial.neighbour", class(out5))
attr(out5, "n") <- length(meuse)
attr(out5, "region.id") <- as.character(1:length(meuse))
nb1 <- sn2listw(out5)$neighbours
nb2 <- make.sym.nb(nb1)
}

## End(Not run)
}

Distance between geometries

Description

Calculates the distance between the given geometries

Usage

gDistance(spgeom1, spgeom2=NULL, byid=FALSE, hausdorff=FALSE, densifyFrac = NULL)
gWithinDistance(spgeom1, spgeom2=NULL, dist, byid=FALSE,
 hausdorff=FALSE, densifyFrac=NULL)

Arguments

spgeom1, spgeom2

sp objects as defined in package sp. If spgeom2 is NULL then spgeom1 is compared to itself.

byid

Logical vector determining if the function should be applied across ids (TRUE) or the entire object (FALSE) for spgeom1 and spgeom2

hausdorff

Logical determining if the discrete Hausdorff distance should be calculated

densifyFrac

Numerical value between 0 and 1 that determines the fraction by which to densify each segment of the geometry.

dist

Numerical value that determines cutoff distance

Details

Discrete Hausdorff distance is essentially a measure of the similarity or dissimilarity of the two geometries, see references below for more detailed explanations / descriptions.

If hausdorff is TRUE and densifyFrac is specified then the geometries' segments are densified by splitting each segment into equal length subsegments whose fraction of the total length is equal to densifyFrac.

Value

gDistance by default returns the cartesian minimum distance between the two geometries in the units of the current projection. If hausdorff is TRUE then the Hausdorff distance is returned for the two geometries.

gWithinDistance returns TRUE if returned distance is less than or equal to the specified dist.

Author(s)

Roger Bivand & Colin Rundel

References

Hausdorff Differences: https://en.wikipedia.org/wiki/Hausdorff_distance http://lin-ear-th-inking.blogspot.com/2009/01/computing-geometric-similarity.html

See Also

gWithinDistance

Examples

pt1 = readWKT("POINT(0.5 0.5)")
pt2 = readWKT("POINT(2 2)")

p1 = readWKT("POLYGON((0 0,1 0,1 1,0 1,0 0))")
p2 = readWKT("POLYGON((2 0,3 1,4 0,2 0))")

gDistance(pt1,pt2)
gDistance(p1,pt1)
gDistance(p1,pt2)
gDistance(p1,p2)


p3 = readWKT("POLYGON((0 0,2 0,2 2,0 2,0 0))")
p4 = readWKT("POLYGON((0 0,2 0,2 1.9,1.9 2,0 2,0 0))")
p5 = readWKT("POLYGON((0 0,2 0,2 1.5,1.5 2,0 2,0 0))")
p6 = readWKT("POLYGON((0 0,2 0,2 1,1 2,0 2,0 0))")
p7 = readWKT("POLYGON((0 0,2 0,0 2,0 0))")

gDistance(p3,hausdorff=TRUE)
gDistance(p3,p4,hausdorff=TRUE)
gDistance(p3,p5,hausdorff=TRUE)
gDistance(p3,p6,hausdorff=TRUE)
gDistance(p3,p7,hausdorff=TRUE)

Envelope of Geometry

Description

Function calculates the rectangular bounding box for the given geometry

Usage

gEnvelope(spgeom, byid=FALSE, id = NULL)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

id

Character vector defining id labels for the resulting geometries, if unspecified returned geometries will be labeled based on their parent geometries' labels.

Details

Returns the rectangular bounding box as a SpatialPolygons object. If spgeom is a degenerate case (horizontal/vertical line, single point) then the function may return an object with lower dimension (SpatialLines or SpatialPoints) or an invalid polygon.

Author(s)

Roger Bivand & Colin Rundel

See Also

gBoundary gCentroid gConvexHull gPointOnSurface

Examples

x = readWKT(paste("POLYGON((0 40,10 50,0 60,40 60,40 100,50 90,60 100,60",
 "60,100 60,90 50,100 40,60 40,60 0,50 10,40 0,40 40,0 40))"))
env = gEnvelope(x)

plot(x,col='blue',border='blue')
plot(env,add=TRUE)

#Degenerate Cases
gEnvelope(readWKT("POINT(1 1)")) #returns SpatialPoints
gEnvelope(readWKT("LINESTRING(1 1,1 2)")) #invalid polygon
gEnvelope(readWKT("LINESTRING(1 1,2 1)")) #invalid polygon

Geometry Relationships - Equality

Description

Function for testing equivalence of the given geometries

Usage

gEquals(spgeom1, spgeom2 = NULL, byid = FALSE, returnDense=TRUE,
 checkValidity=FALSE)
	gEqualsExact(spgeom1, spgeom2 = NULL, tol=0.0, byid = FALSE,
 returnDense=TRUE, checkValidity=FALSE)

Arguments

spgeom1, spgeom2

sp objects as defined in package sp. If spgeom2 is NULL then spgeom1 is compared to itself.

byid

Logical vector determining if the function should be applied across ids (TRUE) or the entire object (FALSE) for spgeom1 and spgeom2

tol

Numerical value of tolerance to use when assessing equivalence

returnDense

default TRUE, if false returns a list of the length of spgeom1 of integer vectors listing the 1:length(spgeom2) indices which would be TRUE in the dense logical matrix representation; useful when the sizes of the byid=TRUE returned matrix is very large and it is sparse; essential when the returned matrix would be too large

checkValidity

default FALSE; error meesages from GEOS do not say clearly which object fails if a topology exception is encountered. If this argument is TRUE, gIsValid is run on each in turn in an environment in which object names are available. If objects are invalid, this is reported and those affected are named

Value

gEquals returns TRUE if geometries are "spatially equivalent" which requires that spgeom1 is within spgeom2 and spgeom2 is within spgeom1, this ignores ordering of points within the geometries. Note that it is possible for geometries with different coordinates to be "spatially equivalent".

gEqualsExact returns TRUE if geometries are "exactly equivalent" which requires that spgeom1 and spgeom1 are "spatially equivalent" and that their constituent points are in the same order.

Note

Error messages from GEOS, in particular topology exceptions, report 0-based object order, so geom 0 is spgeom1, and geom 1 is spgeom2.

Author(s)

Roger Bivand & Colin Rundel

See Also

gContains gContainsProperly gCovers gCoveredBy gCrosses gDisjoint gEqualsExact gIntersects gOverlaps gRelate gTouches gWithin

Examples

# p1 and p2 are spatially identical but not exactly identical due to point ordering
p1=readWKT("POLYGON((0 0,1 0,1 1,0 1,0 0))")
p2=readWKT("POLYGON((1 1,0 1,0 0,1 0,1 1))")
p3=readWKT("POLYGON((0.01 0.01,1.01 0.01,1.01 1.01,0.01 1.01,0.01 0.01))")

gEquals(p1,p2)
gEquals(p1,p3)
gEqualsExact(p1,p2)
gEqualsExact(p1,p3,tol=0)
gEqualsExact(p1,p3,tol=0.1)

# pt1 and p2t are spatially identical but not exactly identical due to point ordering
pt1 = readWKT("MULTIPOINT(1 1,2 2,3 3)")
pt2 = readWKT("MULTIPOINT(3 3,2 2,1 1)")
pt3 = readWKT("MULTIPOINT(1.01 1.01,2.01 2.01,3.01 3.01)")

gEquals(pt1,pt2)
gEquals(pt1,pt3)
gEqualsExact(pt1,pt2)
gEqualsExact(pt1,pt3,tol=0)
gEqualsExact(pt1,pt3,tol=0.1)


# l2 contains a point that l1 does not
l1 = readWKT("LINESTRING (10 10, 20 20)")
l2 = readWKT("LINESTRING (10 10, 15 15,20 20)")
gEquals(l1,l2)
gEqualsExact(l1,l2)

Interpolate Points along Line Geometry

Description

Return points at specified distances along a line.

Usage

gInterpolate(spgeom, d, normalized = FALSE)

Arguments

spgeom

SpatialLines or SpatialLinesDataFrame object

d

Numeric vector specifying the distance along the line geometry

normalized

Logical determining if normalized distances should be used

Details

If normalized=TRUE, the distances will be interpreted as fractions of the line length.

Value

SpatialPoints object

Author(s)

Rainer Stuetz

See Also

gInterpolate

Examples

gInterpolate(readWKT("LINESTRING(25 50, 100 125, 150 190)"),
             d=seq(0, 1, by = 0.2), normalized = TRUE)

Geometry Relationships - Intersects and Disjoint

Description

Function for testing if the geometries have at least one point in common or no points in common

Usage

gIntersects(spgeom1, spgeom2 = NULL, byid = FALSE, prepared=TRUE,
 returnDense=TRUE, checkValidity=FALSE)
gDisjoint(spgeom1, spgeom2 = NULL, byid = FALSE, returnDense=TRUE,
 checkValidity=FALSE)

Arguments

spgeom1, spgeom2

sp objects as defined in package sp. If spgeom2 is NULL then spgeom1 is compared to itself.

byid

Logical vector determining if the function should be applied across ids (TRUE) or the entire object (FALSE) for spgeom1 and spgeom2

prepared

Logical determining if prepared geometry (spatially indexed) version of the GEOS function should be used. In general prepared geometries should be faster than the alternative.

returnDense

default TRUE, if false returns a list of the length of spgeom1 of integer vectors listing the 1:length(spgeom2) indices which would be TRUE in the dense logical matrix representation; useful when the sizes of the byid=TRUE returned matrix is very large and it is sparse; essential when the returned matrix would be too large

checkValidity

default FALSE; error meesages from GEOS do not say clearly which object fails if a topology exception is encountered. If this argument is TRUE, gIsValid is run on each in turn in an environment in which object names are available. If objects are invalid, this is reported and those affected are named

Value

gIntersects returns TRUE if spgeom1 and spgeom2 have at least one point in common.

gDisjoint returns TRUE if spgeom1 and spgeom2 have no points in common.

Both return a conforming logical matrix if byid = TRUE.

Note

Error messages from GEOS, in particular topology exceptions, report 0-based object order, so geom 0 is spgeom1, and geom 1 is spgeom2.

Author(s)

Roger Bivand & Colin Rundel

See Also

gContains gContainsProperly gCovers gCoveredBy gCrosses gEquals gEqualsExact gOverlaps gRelate gTouches gWithin

Examples

p1 = readWKT("POLYGON((0 0,1 0,1 1,0 1,0 0))")
	p2 = readWKT("POLYGON((0.5 1,0 2,1 2,0.5 1))")
	p3 = readWKT("POLYGON((0.5 0.5,0 1.5,1 1.5,0.5 0.5))")

	l1 = readWKT("LINESTRING(0 3,1 1,2 2,3 0)")
	l2 = readWKT("LINESTRING(1 3.5,3 3,2 1)")
	l3 = readWKT("LINESTRING(-0.1 0,-0.1 1.1,1 1.1)")
	
	pt1 = readWKT("MULTIPOINT(1 1,3 0,2 1)")
	pt2 = readWKT("MULTIPOINT(0 3,3 0,2 1)")
	pt3 = readWKT("MULTIPOINT(-0.2 0,1 -0.2,1.2 1,0 1.2)")

	
	par(mfrow=c(3,2))
	plot(p1,col='blue',border='blue',ylim=c(0,2.5));plot(p2,col='black',add=TRUE,pch=16)
	title(paste("Intersects:",gIntersects(p1,p2),
				"\nDisjoint:",gDisjoint(p1,p2)))
	
	plot(p1,col='blue',border='blue',ylim=c(0,2.5));plot(p3,col='black',add=TRUE,pch=16)
	title(paste("Intersects:",gIntersects(p1,p3),
				"\nDisjoint:",gDisjoint(p1,p3)))
				
	plot(l1,col='blue');plot(pt1,add=TRUE,pch=16)
	title(paste("Intersects:",gIntersects(l1,pt1),
				"\nDisjoint:",gDisjoint(l1,pt1)))
	
	plot(l1,col='blue');plot(pt2,add=TRUE,pch=16)
	title(paste("Intersects:",gIntersects(l1,pt2),
				"\nDisjoint:",gDisjoint(l1,pt2)))
	
	plot(p1,col='blue',border='blue',xlim=c(-0.5,2),ylim=c(0,2.5))
	plot(l3,lwd=2,col='black',add=TRUE)
	title(paste("Intersects:",gIntersects(p1,l3),
				"\nDisjoint:",gDisjoint(p1,l3)))
	
	plot(p1,col='blue',border='blue',xlim=c(-0.5,2),ylim=c(-0.5,2))
	plot(pt3,pch=16,col='black',add=TRUE)
	title(paste("Intersects:",gIntersects(p1,pt3),
				"\nDisjoint:",gDisjoint(p1,pt3)))

# Michael Chirico bug report and fix 2019-08-16
	SP1 = SpatialPoints(
	  cbind(c(.25, .75), c(.75, .25))	)
	SP2 = SpatialPolygons(list(
	  Polygons(list(Polygon(cbind(c(0, 0, 1, 1), c(0, 1, 1, 0)))), ID = 'a'),
	  Polygons(list(Polygon(cbind(c(1, 1, 2, 2), c(1, 2, 2, 1)))), ID = 'b')
	))

	gIntersects(SP1, SP2, byid = c(TRUE, FALSE))
	gIntersects(SP1, SP2, byid = c(TRUE, TRUE))
        gIntersects(SP1, SP2, byid = c(FALSE, TRUE))
        gIntersects(SP1, SP2, byid = c(FALSE, FALSE))

Is Geometry Empty?

Description

Tests if the given geometry is empty

Usage

gIsEmpty(spgeom, byid = FALSE)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

Details

Because no sp Spatial object may be empty, the function exists but cannot work, as readWKT is not permitted to create an empty object.

Value

Returns TRUE if the given geometry is empty, FALSE otherwise.

Author(s)

Roger Bivand & Colin Rundel

See Also

gIsRing gIsSimple gIsValid

Examples

try(gIsEmpty(readWKT("POINT EMPTY")))
gIsEmpty(readWKT("POINT(1 1)"))
try(gIsEmpty(readWKT("LINESTRING EMPTY")))
gIsEmpty(readWKT("LINESTRING(0 0,1 1)"))
try(gIsEmpty(readWKT("POLYGON EMPTY")))
gIsEmpty(readWKT("POLYGON((0 0,1 0,1 1,0 1,0 0))"))

Is Geometry a Ring?

Description

Tests if the given geometry is a ring

Usage

gIsRing(spgeom, byid = FALSE)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

Value

Returns TRUE if the geometry is a LINEARRING.

Returns TRUE if the geometry is a LINESTRING that is both Simple (gIsSimple) and Closed (end points intersect), FALSE otherwise.

Returns FALSE if the geometry is a [MULTI]POINT, MULTILINESTRING, or [MULTI]POLYGON.

Author(s)

Roger Bivand & Colin Rundel

See Also

gIsEmpty gIsSimple gIsValid

Examples

l1 = readWKT("LINESTRING(0 0, 1 1, 1 0, 0 1, 0 0)")
l2 = readWKT("LINESTRING(0 0,1 0,1 1,0 1,0 0)")
r1 = readWKT("LINEARRING(0 0, 1 1, 1 0, 0 1, 0 0)")
r2 = readWKT("LINEARRING(0 0,1 0,1 1,0 1,0 0)")
p1 = readWKT("POLYGON((0 0, 1 1, 1 0, 0 1, 0 0))")
p2 = readWKT("POLYGON((0 0,1 0,1 1,0 1,0 0))")

par(mfrow=c(3,2))
plot(l1);title(paste("LINESTRING\nRing:",gIsRing(l1)))
plot(l2);title(paste("LINESTRING\nRing:",gIsRing(l2)))
plot(r1);title(paste("LINEARRING\nRing:",gIsRing(r1)))
plot(r2);title(paste("LINEARRING\nRing:",gIsRing(r2)))
plot(p1);title(paste("POLYGON\nRing:",gIsRing(p1)))
plot(p2);title(paste("POLYGON\nRing:",gIsRing(p2)))

Is Geometry Simple?

Description

Function tests if the given geometry is simple

Usage

gIsSimple(spgeom, byid = FALSE)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

Details

Simplicity is used in reference to 0 and 1-dimensional geometries ([MULTI]POINT and [MULTI]LINESTRING) whereas Validity (gIsValid) is used in reference to 2-dimensional geometries ([MULTI]POLYGON).

A POINT is always simple.

A MULTIPOINT is simple if no two points are identical.

A LINESTRING is simple if it does not pass through the same point twice (self intersection) except at the end points, in which case it is a ring (gIsRing).

A MULTILINESTRING is simple if all of its subgeometries are simple and none of the subgeometries intersect except at end points.

A [MULTI]POLYGON is simple by definition.

Many of the functions in rgeos expect simple/valid geometries and may exhibit unpredictable behavior if given an invalid geometry. Checking of validity/simplicity can be computationally expensive for complex geometries and so is not done by default, any new geometries should be checked.

Value

Returns TRUE if the given geometry does not contain anomalous points, such as self intersection or self tangency.

Author(s)

Roger Bivand & Colin Rundel

References

Validity Details: http://postgis.net/docs/manual-2.0/using_postgis_dbmanagement.html#OGC_Validity

See Also

gIsEmpty gIsRing gIsValid

Examples

# MULTIPOINT examples
gIsSimple(readWKT("MULTIPOINT(1 1,2 2,3 3)"))
gIsSimple(readWKT("MULTIPOINT(1 1,2 2,1 1)"))

# LINESTRING examples
l1 = readWKT("LINESTRING(0 5,3 4,2 3,5 2)")
l2 = readWKT("LINESTRING(0 5,4 2,5 4,0 1)")
l3 = readWKT("LINESTRING(3 5,0 4,0 2,2 0,5 1,4 4,4 5,3 5)")
l4 = readWKT("LINESTRING(3 5,0 4,4 3,5 2,3 0,1 2,4 5,3 5)")

par(mfrow=c(2,2))
plot(l1);title(paste("Simple:",gIsSimple(l1)))
plot(l2);title(paste("Simple:",gIsSimple(l2)))
plot(l3);title(paste("Simple:",gIsSimple(l3)))
plot(l4);title(paste("Simple:",gIsSimple(l4)))

# MULTILINESTRING examples
ml1 = readWKT("MULTILINESTRING((0 5,1 2,5 0),(3 5,5 4,4 1))")
ml2 = readWKT("MULTILINESTRING((0 5,1 2,5 0),(0 5,5 4,4 1))")
ml3 = readWKT("MULTILINESTRING((0 5,1 2,5 0),(3 5,5 4,2 0))")

par(mfrow=c(1,3))
plot(ml1);title(paste("Simple:",gIsSimple(ml1)))
plot(ml2);title(paste("Simple:",gIsSimple(ml2)))
plot(ml3);title(paste("Simple:",gIsSimple(ml3)))

Is Geometry Valid?

Description

Function tests if the given geometry is valid

Usage

gIsValid(spgeom, byid = FALSE, reason=FALSE)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

reason

Logical determining if the function should return a character string describing why the geometry is invalid

Details

Validity is used in reference to 2-dimensional geometries (LINEARRING and [MULTI]POLYGON) whereas Simplicity (gIsSimple) is used in reference to 0 and 1-dimensional geometries ([MULTI]POINT and [MULTI]LINESTRING).

A LINEARRING is valid if it does not intersect itself.

A POLYGON is valid if no two rings in the boundary (made up of an exterior ring and interior rings) cross. The boundary of a POLYGON may intersect at a POINT but only as a tangent (i.e. not on a line). A POLYGON may not have cut lines or spikes and the interior rings must be contained entirely within the exterior ring.

A MULTIPOLYGON is valid if and only if all of its elements are valid and the interiors of no two elements intersect. The boundaries of any two elements may touch, but only at a finite number of POINTs.

Many of the functions in rgeos expect simple/valid geometries and may exhibit unpredictable behavior if given an invalid geometry. Checking of validity/simplicity can be computationally expensive for complex geometries and so is not done by default, any new geometries should be checked.

Value

By default will return TRUE if the given geometry is well formed, FALSE otherwise. If reason is set to TRUE then a character string is returned describing the geometry, "Valid Geometry" if it is valid or details of the specific issue. Any given geometry may have multiple issues that make it invalid, gIsValid will only return the first, once it has been corrected additionally checking is necessary to confirm that additional issues do not remain.

Author(s)

Roger Bivand & Colin Rundel

References

Validity Details: http://postgis.net/docs/manual-2.0/using_postgis_dbmanagement.html#OGC_Validity

See Also

gIsEmpty gIsRing gIsSimple

Examples

library(sp)
#LINEARRING Example
l = readWKT("LINEARRING(0 0, 100 100, 100 0, 0 100, 0 0)")
plot(l);title(paste("Valid:",gIsValid(l),"\n",gIsValid(l,reason=TRUE)))

#POLYGON and MULTIPOLYGON Examples
p1 = readWKT("POLYGON ((0 60, 0 0, 60 0, 60 60, 0 60), (20 40, 20 20, 40 20, 40 40, 20 40))")
p2 = readWKT("POLYGON ((0 60, 0 0, 60 0, 60 60, 0 60), (20 40, 20 20, 60 20, 20 40))")
p3 = readWKT(paste("POLYGON ((0 120, 0 0, 140 0, 140 120, 0 120),",
 "(100 100, 100 20, 120 20, 120 100, 100 100),",
 "(20 100, 20 40, 100 40, 20 100))"))

p4 = readWKT("POLYGON ((0 40, 0 0, 40 40, 40 0, 0 40))")
p5 = readWKT("POLYGON ((-10 50, 50 50, 50 -10, -10 -10, -10 50), (0 40, 0 0, 40 40, 40 0, 0 40))")
p6 = readWKT("POLYGON ((0 60, 0 0, 60 0, 60 20, 100 20, 60 20, 60 60, 0 60))")
p7 = readWKT(paste("POLYGON ((40 300, 40 20, 280 20, 280 300, 40 300),",
 "(120 240, 80 180, 160 220, 120 240),",
 "(220 240, 160 220, 220 160, 220 240),",
 "(160 100, 80 180, 100 80, 160 100),",
 "(160 100, 220 160, 240 100, 160 100))"))
p8 = readWKT(paste("POLYGON ((40 320, 340 320, 340 20, 40 20, 40 320),",
 "(100 120, 40 20, 180 100, 100 120),",
 "(200 200, 180 100, 240 160, 200 200),",
 "(260 260, 240 160, 300 200, 260 260),",
 "(300 300, 300 200, 340 320, 300 300))"))
p9 = readWKT(paste("MULTIPOLYGON (((20 380, 420 380, 420 20, 20 20, 20 380),",
 "(220 340, 180 240, 60 200, 200 180, 340 60, 240 220, 220 340)),",
 "((60 200, 340 60, 220 340, 60 200)))"))

par(mfrow=c(3,3))
plot(p1,col='black',pbg='white');title(paste("Valid:",gIsValid(p1),"\n",gIsValid(p1,reason=TRUE)))
plot(p2,col='black',pbg='white');title(paste("Valid:",gIsValid(p2),"\n",gIsValid(p2,reason=TRUE)))
plot(p3,col='black',pbg='white');title(paste("Valid:",gIsValid(p3),"\n",gIsValid(p3,reason=TRUE)))
plot(p4,col='black',pbg='white');title(paste("Valid:",gIsValid(p4),"\n",gIsValid(p4,reason=TRUE)))
plot(p5,col='black',pbg='white');title(paste("Valid:",gIsValid(p5),"\n",gIsValid(p5,reason=TRUE)))
plot(p6,col='black',pbg='white');title(paste("Valid:",gIsValid(p6),"\n",gIsValid(p6,reason=TRUE)))
plot(p7,col='black',pbg='white');title(paste("Valid:",gIsValid(p7),"\n",gIsValid(p7,reason=TRUE)))
plot(p8,col='black',pbg='white');title(paste("Valid:",gIsValid(p8),"\n",gIsValid(p8,reason=TRUE)))
plot(p9,col='black',pbg='white')
title(paste("Valid:",gIsValid(p9),"\n",gIsValid(p9,reason=TRUE)))

Length of Geometry

Description

Calculates the length of the given geometry.

Usage

gLength(spgeom, byid=FALSE)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

Value

Returns the length of the geometry in the units of the current projection. By definition [MULTI]POINTs have a length of 0. The length of POLYGONs is the sum of the length of their shell and their hole(s).

Author(s)

Roger Bivand & Colin Rundel

See Also

gArea

Examples

gLength(readWKT("POINT(1 1)"))

gLength(readWKT("LINESTRING(0 0,1 1,2 2)"))
gLength(readWKT("LINESTRING(0 0,1 1,2 0,3 1)"))

gLength(readWKT("POLYGON((0 0,3 0,3 3,0 3,0 0))"))
gLength(readWKT("POLYGON((0 0,3 0,3 3,0 3,0 0),(1 1,2 1,2 2,1 2,1 1))"))

Make invalid geometries valid

Description

Function returns a valid geometry, not available before GEOS 3.8.0; from 3.10.0 two correction strategies

Usage

gMakeValid(spgeom, byid=FALSE, id = NULL, original=NULL, keepCollapsed=NULL)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

id

Character vector defining id labels for the resulting geometries, if unspecified returned geometries will be labeled based on their parent geometries' labels.

original

default NULL; if GEOS < 3.10.0, TRUE, if GEOS >= 3.10.0, either set directly or taken from environment variable GEOS_MAKE_VALID with values LINEWORK for the original algorithm or STRUCTURE for the new algorithm. If GEOS_MAKE_VALID is STRUCTURE, original is FALSE

keepCollapsed

default NULL; If GEOS >= 3.10.0 and original is FALSE, the argument is used to control whether objects with dimension reduction are discarded (keepCollapsed is FALSE) or retained (TRUE). It may be set directly, or if NULL controlled by environment variable GEOS_MAKE_VALID_KEEPCOLLAPSED with values FALSE or TRUE. If GEOS_MAKE_VALID_KEEPCOLLAPSED is TRUE, keepCollapsed is TRUE

Details

Returns a valid geometry or collection of geometries of different types. For details on the buffered geometry fixer, see links from https://github.com/r-spatial/sf/issues/1655.

Author(s)

Roger Bivand

See Also

SpatialCollections-class

Examples

# Based on test geometries from sf
run <- FALSE
if (version_GEOS0() >= "3.8.0") run <- TRUE
if (run) {
X <- readWKT("POLYGON ((0 0, 0.5 0, 0.5 0.5, 0.5 0, 1 0, 1 1, 0 1, 0 0))")
gIsValid(X)
}
if (run) {
class(X)
}
if (run) {
row.names(X)
}
if (run) {
Y <- gMakeValid(X)
}
if (run) {
gIsValid(Y)
}
if (run) {
class(Y)
}
if (run) {
plot(slot(Y, "polyobj"))
plot(slot(Y, "lineobj"), add=TRUE, col="red")
}
if (run) {
row.names(slot(Y, "polyobj"))
}
if (run) {
row.names(slot(Y, "lineobj"))
}
run <- FALSE
if (version_GEOS0() >= "3.10.0") run <- TRUE
if (run) {
JTSplot <- function(x, fill="grey90", pts="black", main="", xlim, ylim) {
  if (inherits(x, "SpatialCollections")) {
    xl <- xp <- xpl <- NULL
    if (!is.null(slot(x, "lineobj"))) xl <- slot(x, "lineobj")
    if (!is.null(slot(x, "pointobj"))) xp <- slot(x, "pointobj")
    if (!is.null(slot(x, "polyobj"))) xpl <- slot(x, "polyobj")
    if (is.null(xl)) xl <- as(xpl, "SpatialLines")
    else xl <- rbind(xl, as(xpl, "SpatialLines"))
    if (is.null(xp)) xp <- as(xl, "SpatialPoints")
    else xp <- rbind(xp, as(xl, "SpatialPoints"))
  } else {
    xl <- as(x, "SpatialLines")
    xp <- as(xl, "SpatialPoints")
  }
  plot(coordinates(xp), type="n", main=main, xlab="", ylab="", axes=FALSE, xlim=xlim, ylim=ylim)
  plot(x, col=fill, border="transparent", add=TRUE, xlim=xlim, ylim=ylim)
  plot(xl, col=pts, add=TRUE, xlim=xlim, ylim=ylim)
  plot(xp, col=pts, add=TRUE, pch=14, xlim=xlim, ylim=ylim)
}
}
if (run) {
X <- readWKT(paste0("POLYGON ((10 70, 90 70, 90 50, 30 50, 30 30, ",
 "50 30, 50 90, 70 90, 70 10, 10 10, 10 70))", sep=""))
bb <- bbox(X)
opar <- par(mfrow=c(2,2))
JTSplot(X, fill="#dfdfff", pts="#00007c", main="input", xlim=bb[1,], ylim=bb[2,])
JTSplot(gMakeValid(X, original=TRUE), fill="#ffffa4", pts="#78b400",
 main="linework", xlim=bb[1,], ylim=bb[2,])
JTSplot(gMakeValid(X, original=FALSE), fill="#ffffa4", pts="#78b400",
 main="structure", xlim=bb[1,], ylim=bb[2,])
JTSplot(gMakeValid(X, original=FALSE, keepCollapsed=TRUE), fill="#ffffa4",
 pts="#78b400", main="structure + keep collapsed", xlim=bb[1,], ylim=bb[2,])
par(opar)
}
if (run) {
X <- readWKT(paste0("POLYGON ((10 70, 90 70, 90 10, 10 10, 10 70), ",
 "(60 80, 50 30, 0 20, 10 30, 60 80), (30 40, 60 30, 40 0, 30 40))", sep=""))
bb <- rbind(c(0, 90), c(0, 80))
opar <- par(mfrow=c(2,2))
JTSplot(X, fill="#dfdfff", pts="#00007c", main="input", xlim=bb[1,], ylim=bb[2,])
JTSplot(gMakeValid(X, original=TRUE), fill="#ffffa4", pts="#78b400",
 main="linework", xlim=bb[1,], ylim=bb[2,])
JTSplot(gMakeValid(X, original=FALSE), fill="#ffffa4", pts="#78b400",
 main="structure", xlim=bb[1,], ylim=bb[2,])
JTSplot(gMakeValid(X, original=FALSE, keepCollapsed=TRUE), fill="#ffffa4",
 pts="#78b400", main="structure + keep collapsed", xlim=bb[1,], ylim=bb[2,])
par(opar)
}
if (run) {
X <- readWKT(paste0("MULTIPOLYGON (((10 90, 60 90, 60 40, 10 40, 10 90)), ",
 "((40 60, 70 60, 70 30, 40 30, 40 60)), ((20 50, 50 50, 50 20, 20 20, 20 50)))", sep=""))
bb <- bbox(X)
opar <- par(mfrow=c(2,2))
JTSplot(X, fill="#dfdfff", pts="#00007c", main="input", xlim=bb[1,], ylim=bb[2,])
JTSplot(gMakeValid(X, original=TRUE), fill="#ffffa4", pts="#78b400",
 main="linework", xlim=bb[1,], ylim=bb[2,])
JTSplot(gMakeValid(X, original=FALSE), fill="#ffffa4", pts="#78b400",
 main="structure", xlim=bb[1,], ylim=bb[2,])
JTSplot(gMakeValid(X, original=FALSE, keepCollapsed=TRUE), fill="#ffffa4",
 pts="#78b400", main="structure + keep collapsed", xlim=bb[1,], ylim=bb[2,])
par(opar)
}
if (run) {
X <- readWKT(paste0("MULTIPOLYGON (((10 40, 40 40, 40 10, 10 10, 10 40), ", 
"(16 17, 31 32, 24 25, 16 17)), ((50 40, 50 40, 50 40, 50 40, 50 40)))", sep=""))
bb <- bbox(X)
opar <- par(mfrow=c(2,2))
JTSplot(X, fill="#dfdfff", pts="#00007c", main="input", xlim=bb[1,], ylim=bb[2,])
JTSplot(gMakeValid(X, original=TRUE), fill="#ffffa4", pts="#78b400",
 main="linework", xlim=bb[1,], ylim=bb[2,])
JTSplot(gMakeValid(X, original=FALSE), fill="#ffffa4", pts="#78b400",
 main="structure", xlim=bb[1,], ylim=bb[2,])
JTSplot(gMakeValid(X, original=FALSE, keepCollapsed=TRUE), fill="#ffffa4",
 pts="#78b400", main="structure + keep collapsed", xlim=bb[1,], ylim=bb[2,])
par(opar)
}
if (run) {
X <- readWKT(paste0("MULTIPOLYGON (((10 40, 40 40, 40 10, 10 10, 10 40), ", 
"(16 17, 31 32, 24 25, 16 17)), ((50 40, 50 40, 50 40, 50 40, 50 40)))", sep=""))
bb <- bbox(X)
opar <- par(mfrow=c(2,2))
JTSplot(X, fill="#dfdfff", pts="#00007c", main="input", xlim=bb[1,], ylim=bb[2,])
Sys.setenv("GEOS_MAKE_VALID"="LINEWORK")
JTSplot(gMakeValid(X), fill="#ffffa4", pts="#78b400", main="linework (env-var)",
 xlim=bb[1,], ylim=bb[2,])
Sys.setenv("GEOS_MAKE_VALID"="STRUCTURE")
Sys.setenv("GEOS_MAKE_VALID_KEEPCOLLAPSED"="FALSE")
JTSplot(gMakeValid(X), fill="#ffffa4", pts="#78b400", main="structure (env-vars)",
 xlim=bb[1,], ylim=bb[2,])
Sys.setenv("GEOS_MAKE_VALID_KEEPCOLLAPSED"="TRUE")
JTSplot(gMakeValid(X), fill="#ffffa4", pts="#78b400", main="structure + keep collapsed (env-vars)",
 xlim=bb[1,], ylim=bb[2,])
par(opar)
Sys.unsetenv("GEOS_MAKE_VALID")
Sys.unsetenv("GEOS_MAKE_VALID_KEEPCOLLAPSED")

}

Centroid of Geometry

Description

.

Usage

gMaximumInscribedCircle(spgeom, byid=FALSE, id = NULL, tol=.Machine$double.eps^(1/2),
 checkValidity=NULL)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

id

Character vector defining id labels for the resulting geometries, if unspecified returned geometries will be labeled based on their parent geometries' labels.

tol

Numerical tolerance value

checkValidity

default FALSE; error meesages from GEOS do not say clearly which object fails if a topology exception is encountered. If this argument is TRUE, gIsValid is run on each in turn in an environment in which object names are available. If objects are invalid, this is reported and those affected are named

Details

.

Author(s)

Roger Bivand & Colin Rundel

See Also

gBoundary gConvexHull gEnvelope gPointOnSurface

Examples

if (version_GEOS0() >= "3.9.0") {
x = readWKT(paste("GEOMETRYCOLLECTION(POLYGON((0 0,10 0,10 10,0 10,0 0)),",
 "POLYGON((15 0,25 15,35 0,15 0)))"))

# Maximum inscribed circles of both the square and circle independently
c1 = gMaximumInscribedCircle(x, byid=TRUE) 
c1_sp <- as(c1, "SpatialPoints") # coercion of straight line segments to points
c1_sp1 <- NULL
if ((length(c1_sp) %% 2) == 0) c1_sp1 <- c1_sp[seq(1, length(c1_sp), 2)]
if (!is.null(c1_sp1)) c1_circ <- gBuffer(c1_sp1, byid=TRUE,
 width=gLength(c1, byid=TRUE))
# Maximum inscribed circle of square and circle together, needs gUnaryUnion(), 
# inscribes circle in the component permitting the largest circle
c2 = gMaximumInscribedCircle(gUnaryUnion(x))

opar <- par(mfrow=c(2,1))
plot(x)
plot(c1, col='red', add=TRUE, lwd=2)
if (!is.null(c1_sp1)) plot(c1_circ, border="red", add=TRUE)
plot(x)
plot(c2, col='blue', add=TRUE)
par(opar)
}

Centroid of Geometry

Description

Returns the minimum rotated rectangular POLYGON which encloses the input geometry.

Usage

gMinumumRotatedRectangle(spgeom, byid=FALSE, id = NULL)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

id

Character vector defining id labels for the resulting geometries, if unspecified returned geometries will be labeled based on their parent geometries' labels.

Details

Returns the minimum rotated rectangular POLYGON which encloses the input geometry. The rectangle has width equal to the minimum diameter, and a longer length. If the convex hill of the input is degenerate (a line or point) a LINESTRING or POINT is returned. The minimum rotated rectangle can be used as an extremely generalized representation for the given geometry.

Author(s)

Roger Bivand & Colin Rundel

See Also

gBoundary gConvexHull gEnvelope gPointOnSurface

Examples

if (version_GEOS0() >= "3.9.0") {
x = readWKT(paste("GEOMETRYCOLLECTION(POLYGON((0 0,10 1,10 11,0 10,0 0)),",
 "POLYGON((15 0,25 12,35 3,15 0)))"))

# Minimum rotated rectangles of both the square and circle independently
c1 = gMinumumRotatedRectangle(x,byid=TRUE) 
# Minimum rotated rectangle of square and circle together
c2 = gMinumumRotatedRectangle(x)

opar <- par(mfrow=c(2,1))
plot(c1, border='red', lwd=2, lty=2)
plot(x,add=TRUE)
plot(c2, border='blue', lwd=2, lty=3)
plot(x,add=TRUE)
par(opar)
}

Closest Points of two Geometries

Description

Return closest points of two geometries.

Usage

gNearestPoints(spgeom1, spgeom2)

Arguments

spgeom1, spgeom2

sp objects as defined in package sp.

Value

The closest points of the two geometries or NULL on exception. The first point comes from spgeom1 geometry and the second point comes from spgeom2.

Author(s)

Rainer Stuetz

See Also

gDistance

Examples

g1 <- readWKT("MULTILINESTRING((34 54, 60 34), (0 10, 50 10, 100 50))")
g2 <- readWKT("MULTIPOINT(30 0, 100 30)")
plot(g1, pch=4, axes=TRUE)
plot(g2, add=TRUE)
plot(gNearestPoints(g1, g2), add=TRUE, col="red", pch=7)
gDistance(g1, g2)

Linestring Noder

Description

Function attempts to node a linestring object, inserting coordinates at intersection points; only available for GEOS >= 3.4.0.

Usage

gNode(spgeom);

Arguments

spgeom

an sp object inheriting from SpatialLines

Details

Because gPolygonize expects linestrings to be fully noded, as such they must not cross and must touch only at endpoints. gNodee takes an object inheriting from SpatialLines and attempts to add omitted nodes. Issue reported by Nicola Farina 21 March 2014.

Value

Returns a noded linestring object.

Author(s)

Roger Bivand

See Also

gPolygonize

Examples

library(sp)
pol1 <- readWKT(paste("POLYGON((39.936 43.446, 39.94 43.446, 39.94 43.45,",
 "39.936 43.45, 39.936 43.446))"))
pol2 <- readWKT(paste("POLYGON((39.9417 43.45, 39.9395 43.4505,",
 "39.9385 43.4462, 39.9343 43.4452, 39.9331 43.4469, 39.9417 43.45))"))
plot(pol2, axes=TRUE)
plot(pol1, add=TRUE, border="blue")
gIsValid(pol1)
gIsValid(pol2)
try(res <- gUnion(pol1, pol2))
if (version_GEOS0() > "3.4.0") {
pol2a <- gPolygonize(gNode(as(pol2, "SpatialLines")))
try(res <- gUnion(pol1, pol2a))
plot(res, add=TRUE, border="red", lty=2, lwd=2)
set.seed(1)
# rw from Jim Holtman's R-help posting 2010-12-2
n <- 1000
rw <- matrix(0, ncol = 2, nrow = n)
indx <- cbind(seq(n), sample(c(1, 2), n, TRUE))
rw[indx] <- sample(c(-1, 1), n, TRUE)
rw[,1] <- cumsum(rw[, 1])
rw[, 2] <- cumsum(rw[, 2])
slrw <- SpatialLines(list(Lines(list(Line(rw)), "1")))
res0 <- gNode(slrw)
print(length(slrw))
print(length(res0))
res <- gPolygonize(res0)
print(summary(res))
print(length(res))
plot(res0, axes=TRUE)
plot(res, add=TRUE, col=sample(rainbow(length(res))))
# library(spatstat)
# set.seed(0)
# X <- psp(runif(100), runif(100), runif(100), runif(100), window=owin())
# library(maptools)
# sppsp <- as(X, "SpatialLines")
# writeLines(writeWKT(sppsp, byid=FALSE), con="sppsp.wkt")
sppsp <- readWKT(readLines(system.file("wkts/sppsp.wkt", package="rgeos")))
plot(sppsp, axes=TRUE)
res0 <- gNode(sppsp)
res <- gPolygonize(res0)
plot(res, add=TRUE, col=sample(rainbow(length(res))))
}

Class "gpc.poly"

Description

A class for representing polygons composed of multiple contours, some of which may be holes.

Objects from the Class

Objects can be created by calls of the form new("gpc.poly", ...) or by reading in from a file using read.polyfile.

Slots

pts

Object of class “list”. Actually, pts is a list of lists with length equal to the number of contours in the "gpc.poly" object. Each element of pts is a list of length 3 with names x, y, and hole. x and y are vectors containing the x and y coordinates, respectively, while hole is a logical indicating whether or not the contour is a hole.

Methods

[

signature(x = "gpc.poly"): ...

append.poly

signature(x = "gpc.poly", y = "gpc.poly"): ...

area.poly

signature(object = "gpc.poly"): ...

coerce

signature(from = "matrix", to = "gpc.poly"): ...

coerce

signature(from = "data.frame", to = "gpc.poly"): ...

coerce

signature(from = "numeric", to = "gpc.poly"): ...

coerce

signature(from = "list", to = "gpc.poly"): ...

coerce

signature(from = "SpatialPolygons", to = "gpc.poly"): ...

coerce

signature(from = "gpc.poly", to = "matrix"): ...

coerce

signature(from = "gpc.poly", to = "numeric"): ...

coerce

signature(from = "gpc.poly", to = "SpatialPolygons"): ...

get.bbox

signature(x = "gpc.poly"): ...

get.pts

signature(object = "gpc.poly"): ...

intersect

signature(x = "gpc.poly", y = "gpc.poly"): ...

plot

signature(x = "gpc.poly"): The argument poly.args can be used to pass a list of additional arguments to be passed to the underlying polygon call.

scale.poly

signature(x = "gpc.poly"): ...

setdiff

signature(x = "gpc.poly", y = "gpc.poly"): ...

show

signature(object = "gpc.poly"): Scale x and y coordinates by amount xscale and yscale. By default xscale equals yscale.

symdiff

signature(x = "gpc.poly", y = "gpc.poly"): ...

union

signature(x = "gpc.poly", y = "gpc.poly"): ...

tristrip

signature(x = "gpc.poly"): ...

triangulate

signature(x = "gpc.poly"): ...

Note

The class "gpc.poly.nohole" is identical to "gpc.poly" except the hole flag for each contour of a "gpc.poly.nohole" object is always FALSE.

Author(s)

Roger D. Peng

Examples

## Make some random polygons
set.seed(100)
a <- cbind(rnorm(100), rnorm(100))
a <- a[chull(a), ]

## Convert `a' from matrix to "gpc.poly"
a <- as(a, "gpc.poly")

b <- cbind(rnorm(100), rnorm(100))
b <- as(b[chull(b), ], "gpc.poly")

## More complex polygons with an intersection
p1 <- read.polyfile(system.file("poly-ex-gpc/ex-poly1.txt", package = "rgeos"))
p2 <- read.polyfile(system.file("poly-ex-gpc/ex-poly2.txt", package = "rgeos"))

## Plot both polygons and highlight their intersection in red
plot(append.poly(p1, p2))
plot(intersect(p1, p2), poly.args = list(col = 2), add = TRUE)

## Highlight the difference p1 \ p2 in green
plot(setdiff(p1, p2), poly.args = list(col = 3), add = TRUE)

## Highlight the difference p2 \ p1 in blue
plot(setdiff(p2, p1), poly.args = list(col = 4), add = TRUE)

## Plot the union of the two polygons
plot(union(p1, p2))

## Take the non-intersect portions and create a new polygon
## combining the two contours
p.comb <- append.poly(setdiff(p1, p2), setdiff(p2, p1))
plot(p.comb, poly.args = list(col = 2, border = 0))

## Coerce from a matrix
x <- 
structure(c(0.0934073560027759, 0.192713393476752, 0.410062456627342, 
0.470020818875781, 0.41380985426787, 0.271408743927828, 0.100902151283831, 
0.0465648854961832, 0.63981588032221, 0.772382048331416,
0.753739930955121, 0.637744533947066, 0.455466052934407,
0.335327963176065, 0.399539700805524, 
0.600460299194476), .Dim = c(8, 2))
y <- 
structure(c(0.404441360166551, 0.338861901457321, 0.301387925052047, 
0.404441360166551, 0.531852879944483, 0.60117973629424, 0.625537820957668, 
0.179976985040276, 0.341542002301496, 0.445109321058688,
0.610817031070196, 0.596317606444189, 0.459608745684695,
0.215189873417722), .Dim = c(7, 2))

x1 <- as(x, "gpc.poly")
y1 <- as(y, "gpc.poly")

plot(append.poly(x1, y1))
plot(intersect(x1, y1), poly.args = list(col = 2), add = TRUE)

## Show the triangulation
#plot(append.poly(x1, y1))
#triangles <- triangulate(append.poly(x1,y1))
#for (i in 0:(nrow(triangles)/3 - 1)) 
#    polygon(triangles[3*i + 1:3,], col="lightblue")

Class "gpc.poly.nohole"

Description

A class for representing polygons with multiple contours but without holes.

Objects from the Class

Objects can be created by calls of the form ‘new("gpc.poly.nohole", ...) or by calling read.polyfile’.

Slots

pts

Object of class “list”. See the help for “gpc.poly” for details.

Extends

Class “gpc.poly”, directly.

Methods

coerce

signature(from = "numeric", to = "gpc.poly.nohole"): ...

Note

This class is identical to “"gpc.poly"” and is needed because the file formats for polygons without holes is slightly different from the file format for polygons with holes. For a “gpc.poly.nohole” object, the ⁠hole⁠ flag for each contour is always FALSE.

Also, write.polyfile will write the correct file format, depending on whether the object is of class “gpc.poly” or “gpc.poly.nohole”.

Author(s)

Roger D. Peng

See Also

gpc.poly-class

Examples

## None

Point on Surface of Geometry

Description

Function returns a point on the surface of the given geometry

Usage

gPointOnSurface(spgeom, byid=FALSE, id = NULL)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

id

Character vector defining id labels for the resulting geometries, if unspecified returned geometries will be labeled based on their parent geometries' labels.

Details

Returns a SpatialPoints object with a point that intersects with the geometry

Author(s)

Roger Bivand & Colin Rundel

See Also

gBoundary gCentroid gConvexHull gEnvelope

Examples

# Based on test geometries from JTS
g1 = readWKT(paste("MULTIPOINT (60 300, 200 200, 240 240, 200 300, 40 140,",
 "80 240, 140 240, 100 160, 140 200, 60 200)"))
g2 = readWKT("LINESTRING (0 0, 7 14)")
g3 = readWKT("LINESTRING (0 0, 3 15, 6 2, 11 14, 16 5, 16 18, 2 22)")
g4 = readWKT(paste("MULTILINESTRING ((60 240, 140 300, 180 200, 40 140, 100 100, 120 220),",
 "(240 80, 260 160, 200 240, 180 340, 280 340, 240 180, 180 140, 40 200, 140 260))"))
g5 = readWKT("POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0))")
g6 = readWKT(paste("MULTIPOLYGON (((50 260, 240 340, 260 100, 20 60, 90 140, 50 260),",
 "(200 280, 140 240, 180 160, 240 140, 200 280)),",
 "((380 280, 300 260, 340 100, 440 80, 380 280),",
 "(380 220, 340 200, 400 100, 380 220)))"))

par(mfrow=c(2,3))
plot(g1); plot(gPointOnSurface(g1),col='red',add=TRUE)
plot(g2); plot(gPointOnSurface(g2),col='red',add=TRUE)
plot(g3); plot(gPointOnSurface(g3),col='red',add=TRUE)
plot(g4); plot(gPointOnSurface(g4),col='red',add=TRUE)
plot(g5); plot(gPointOnSurface(g5),col='red',add=TRUE)
plot(g6); plot(gPointOnSurface(g6),col='red',add=TRUE)

Linestring Polygonizer

Description

Function attempts to polygonize the given list of linestrings. If the linestrings are not noded (coordinates inserted at intersection points), the function may fail. gNode may be tried to insert such missing points

Usage

gPolygonize( splist, getCutEdges=FALSE);

Arguments

splist

a list of sp SpatialLines objects

getCutEdges

Logical vector indicating if cut edges should be returned

Details

Polygonization is the process of forming polygons from linestrings which enclose an area. Linestrings are expected to be fully noded, as such they must not cross and must touch only at endpoints. gPolygonize takes a list of fully noded linestrings and forms all the polygons which are enclosed by the lines. Polygonization errors such as dangling lines or cut lines can be identified and reported.

Value

By default returns polygons generated by polygonizing the given linestrings. If getCutEdges is TRUE then any cut edges are returned.

Author(s)

Roger Bivand & Colin Rundel

See Also

gNode

Examples

library(sp)
linelist = list(readWKT("LINESTRING (0 0 , 10 10)"),
				readWKT("LINESTRING (185 221, 100 100)"),
				readWKT("LINESTRING (185 221, 88 275, 180 316)"),
				readWKT("LINESTRING (185 221, 292 281, 180 316)"), 
				readWKT("LINESTRING (189 98, 83 187, 185 221)"), 
				readWKT("LINESTRING (189 98, 325 168, 185 221)"))

par(mfrow=c(1,2))
plot(linelist[[1]],xlim=c(0,350),ylim=c(0,350))
title("Linestrings with nodes")
plot(as(linelist[[1]],"SpatialPoints"),pch=16,add=TRUE)

for(i in 2:length(linelist)) {
	plot(linelist[[i]],add=TRUE)
	plot(as(linelist[[i]],"SpatialPoints"),pch=16,add=TRUE)
}

plot(gPolygonize(linelist),xlim=c(0,350),ylim=c(0,350))
title("Polygonized Results")

gPolygonize(linelist,getCutEdges=TRUE) # no cut edges



linelist2 = list(readWKT("LINESTRING(1 3, 3 3, 3 1, 1 1, 1 3)"),
				 readWKT("LINESTRING(1 3, 3 3, 3 1, 1 1, 1 3)"))

gPolygonize(linelist2,getCutEdges=FALSE) # NULL
gPolygonize(linelist2,getCutEdges=TRUE) # Contains LineStrings
# bug fix 130206
LS = list(
readWKT("LINESTRING (425963 576719, 425980 576703)"),
readWKT("LINESTRING (425963 576719, 425882 577073)"),
readWKT("LINESTRING (425980 576703, 426082 577072)"),
readWKT("LINESTRING (425882 577073, 426082 577072)"),
readWKT("LINESTRING (426138 577068, 426082 577072)"),
readWKT("LINESTRING (426138 577068, 426420 577039)"),
readWKT("LINESTRING (426420 577039, 426554 576990)"),
readWKT("LINESTRING (426751 576924, 426776 576823)"),
readWKT("LINESTRING (426751 576924, 426783 576919)"),
readWKT("LINESTRING (426751 576924, 426714 576953)"),
readWKT("LINESTRING (426776 576823, 426783 576919)"),
readWKT("LINESTRING (426658 576966, 426554 576990)"),
readWKT("LINESTRING (426658 576966, 426667 577031)"),
readWKT("LINESTRING (426658 576966, 426714 576953)"),
readWKT("LINESTRING (426667 577031, 426714 576953)")
)
plot(gPolygonize(LS))

Project Points to Line Geometry

Description

Return distances along geometry to points nearest the specified points.

Usage

gProject(spgeom, sppoint, normalized = FALSE)

Arguments

spgeom

SpatialLines or SpatialLinesDataFrame object

sppoint

SpatialPoints or SpatialPointsDataFrame object

normalized

Logical determining if normalized distances should be used

Details

If normalized=TRUE, distances normalized to the length of the geometry are returned, i.e., values between 0 and 1.

Value

a numeric vector containing the distances along the line to points nearest to the specified points

Author(s)

Rainer Stuetz

See Also

gInterpolate

Examples

l <- readWKT("LINESTRING(0 1, 3 4, 5 6)")
p1 <- readWKT("MULTIPOINT(3 2, 3 5)")
frac <- gProject(l, p1)
p2 <- gInterpolate(l, frac)
plot(l, axes=TRUE)
plot(p1, col = "blue", add = TRUE)
plot(p2, col = "red", add = TRUE)

Geometry Relationships - Intersection Matrix Pattern (DE-9IM)

Description

Determines the relationships between two geometries by comparing the intersection of Interior, Boundary and Exterior of both geometries to each other. The results are summarized by the Dimensionally Extended 9-Intersection Matrix or DE-9IM.

Usage

gRelate(spgeom1, spgeom2 = NULL, pattern = NULL, byid = FALSE,
 checkValidity=FALSE)

Arguments

spgeom1, spgeom2

sp objects as defined in package sp. If spgeom2 is NULL then spgeom1 is compared to itself.

byid

Logical vector determining if the function should be applied across ids (TRUE) or the entire object (FALSE) for spgeom1 and spgeom2

pattern

Character string containing intersection matrix pattern to match against DE-9IM for given geometries. Wild card * or * characters allowed.

checkValidity

default FALSE; error meesages from GEOS do not say clearly which object fails if a topology exception is encountered. If this argument is TRUE, gIsValid is run on each in turn in an environment in which object names are available. If objects are invalid, this is reported and those affected are named

Details

Each geometry is decomposed into an interior, a boundary, and an exterior region, all the resulting geometries are then tested by intersection against one another resulting in 9 total comparisons. These comparisons are summarized by the dimensions of the intersection region, as such intersection at point(s) is labeled 0, at linestring(s) is labeled 1, at polygons(s) is labeled 2, and if they do not intersect labeled F.

If a pattern is specified then limited matching with wildcards is possible, * matches any character whereas T matches any non-F character.

See references for additional details.

Value

By default returns a 9 character string that represents the DE-9IM.

If pattern returns TRUE if the pattern matches the DE-9IM.

Note

Error messages from GEOS, in particular topology exceptions, report 0-based object order, so geom 0 is spgeom1, and geom 1 is spgeom2.

Author(s)

Roger Bivand & Colin Rundel

References

Documentation of Intersection Matrix Patterns: https://docs.geotools.org/stable/userguide/library/jts/dim9.html

See Also

gContains gContainsProperly gCovers gCoveredBy gCrosses gDisjoint gEquals gEqualsExact gIntersects gOverlaps gTouches gWithin

Examples

x = readWKT("POLYGON((1 0,0 1,1 2,2 1,1 0))")
	x.inter = x
	x.bound = gBoundary(x)
	
	y = readWKT("POLYGON((2 0,1 1,2 2,3 1,2 0))")
	y.inter = y
	y.bound = gBoundary(y)
	
	
	xy.inter = gIntersection(x,y)
	xy.inter.bound = gBoundary(xy.inter)
	
	xy.union = gUnion(x,y)
	bbox = gBuffer(gEnvelope(xy.union),width=0.5,joinStyle='mitre',mitreLimit=3)

	x.exter = gDifference(bbox,x)
	y.exter = gDifference(bbox,y)

	# geometry decomposition
	par(mfrow=c(2,3))
	plot(bbox,border='grey');plot(x,col="black",add=TRUE);title("Interior",ylab = "Polygon X")
	plot(bbox,border='grey');plot(x.bound,col="black",add=TRUE);title("Boundary")
	plot(bbox,border='grey');plot(x.exter,col="black",pbg='white',add=TRUE);title("Exterior")
	plot(bbox,border='grey');plot(y,col="black",add=TRUE);title(ylab = "Polygon Y")
	plot(bbox,border='grey');plot(y.bound,col="black",add=TRUE)
	plot(bbox,border='grey');plot(y.exter,col="black",pbg='white',add=TRUE)
	
	
	
	defaultplot = function() {
		plot(bbox,border='grey')
		plot(x,add=TRUE,col='red1',border="red3")
		plot(y,add=TRUE,col='blue1',border="blue3")		
		plot(xy.inter,add=TRUE,col='orange1',border="orange3")
	}
	
	# Dimensionally Extended 9-Intersection Matrix
	pat = gRelate(x,y)
	patchars = strsplit(pat,"")[[1]]
	
	par(mfrow=c(3,3))
	defaultplot(); plot(gIntersection(x.inter,y.inter),add=TRUE,col='black')
	title(paste("dim:",patchars[1]))
	defaultplot(); plot(gIntersection(x.bound,y.inter),add=TRUE,col='black',lwd=2)
	title(paste("dim:",patchars[2]))
	defaultplot(); plot(gIntersection(x.exter,y.inter),add=TRUE,col='black')
	title(paste("dim:",patchars[3]))
	
	defaultplot(); plot(gIntersection(x.inter,y.bound),add=TRUE,col='black',lwd=2)
	title(paste("dim:",patchars[4]))
	defaultplot(); plot(gIntersection(x.bound,y.bound),add=TRUE,col='black',pch=16)
	title(paste("dim:",patchars[5]))
	defaultplot(); plot(gIntersection(x.exter,y.bound),add=TRUE,col='black',lwd=2)
	title(paste("dim:",patchars[6]))
	
	defaultplot(); plot(gIntersection(x.inter,y.exter),add=TRUE,col='black')
	title(paste("dim:",patchars[7]))
	defaultplot(); plot(gIntersection(x.bound,y.exter),add=TRUE,col='black',lwd=2)
	title(paste("dim:",patchars[8]))
	defaultplot(); plot(gIntersection(x.exter,y.exter),add=TRUE,col='black')
	title(paste("dim:",patchars[9]))

Simplify Geometry

Description

Function simplifies the given geometry using the Douglas-Peuker algorithm

Usage

gSimplify(spgeom, tol, topologyPreserve=FALSE)

Arguments

spgeom

sp object as defined in package sp

tol

Numerical tolerance value to be used by the Douglas-Peuker algorithm

topologyPreserve

Logical determining if the algorithm should attempt to preserve the topology of the original geometry

Details

When applied to lines it is possible for the resulting geometry to lose simplicity (gIsSimple). If topologyPreserve is not specified it is also possible that the resulting geometries may no longer be valid (gIsValid). Remember to check the resulting geometry as many other functions rely on simplicity and or validity when performing their calculations.

Value

Returns a simplified version of the given geometry when applied to [MULTI]LINEs or [MULTI]POLYGONs.

Author(s)

Roger Bivand & Colin Rundel

References

Douglas-Peuker Algorithm: https://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm

Examples

p = readWKT(paste("POLYGON((0 40,10 50,0 60,40 60,40 100,50 90,60 100,60",
 "60,100 60,90 50,100 40,60 40,60 0,50 10,40 0,40 40,0 40))"))
l = readWKT("LINESTRING(0 7,1 6,2 1,3 4,4 1,5 7,6 6,7 4,8 6,9 4)")

par(mfrow=c(2,4))
plot(p);title("Original")
plot(gSimplify(p,tol=10));title("tol: 10")
plot(gSimplify(p,tol=20));title("tol: 20")
plot(gSimplify(p,tol=25));title("tol: 25")

plot(l);title("Original")
plot(gSimplify(l,tol=3));title("tol: 3")
plot(gSimplify(l,tol=5));title("tol: 5")
plot(gSimplify(l,tol=7));title("tol: 7")
par(mfrow=c(1,1))

Geometry Relationships - Touches

Description

Functions for testing if the geometries have at least one boundary point in common, but no interior points

Usage

gTouches(spgeom1, spgeom2 = NULL, byid = FALSE, returnDense=TRUE,
 checkValidity=FALSE)

Arguments

spgeom1, spgeom2

sp objects as defined in package sp. If spgeom2 is NULL then spgeom1 is compared to itself.

byid

Logical vector determining if the function should be applied across ids (TRUE) or the entire object (FALSE) for spgeom1 and spgeom2

returnDense

default TRUE, if false returns a list of the length of spgeom1 of integer vectors listing the 1:length(spgeom2) indices which would be TRUE in the dense logical matrix representation; useful when the sizes of the byid=TRUE returned matrix is very large and it is sparse; essential when the returned matrix would be too large

checkValidity

default FALSE; error meesages from GEOS do not say clearly which object fails if a topology exception is encountered. If this argument is TRUE, gIsValid is run on each in turn in an environment in which object names are available. If objects are invalid, this is reported and those affected are named

Value

Returns TRUE if the intersection of the boundaries of the two geometries is not empty.

Note

Error messages from GEOS, in particular topology exceptions, report 0-based object order, so geom 0 is spgeom1, and geom 1 is spgeom2.

Author(s)

Roger Bivand & Colin Rundel

See Also

gContains gContainsProperly gCovers gCoveredBy gCrosses gDisjoint gEquals gEqualsExact gIntersects gOverlaps gRelate gWithin

Examples

p1 = readWKT("POLYGON((0 0,1 0,1 1,0 1,0 0))")
	p2 = readWKT("POLYGON((0 1,0.5 2,1 1,0 1))")
	p3 = readWKT("POLYGON((0.5 1,0 2,1 2,0.5 1))")
	p4 = readWKT("POLYGON((0.5 0.5,0 1.5,1 1.5,0.5 0.5))")
	
	l0 = readWKT("LINESTRING(0 1,0.5 2,1 1)")
	
	l1 = readWKT("LINESTRING(0 0,2 2)")
	l2 = readWKT("LINESTRING(1 1,2 0)")
	l3 = readWKT("LINESTRING(0 2,2 0)")
	
	
	par(mfrow=c(2,3))
	plot(p1,col='blue',border='blue',ylim=c(0,2.5));plot(p2,col='black',add=TRUE,pch=16)
	title(paste("Touches:",gTouches(p1,p2)))
	
	plot(p1,col='blue',border='blue',ylim=c(0,2.5));plot(p3,col='black',add=TRUE,pch=16)
	title(paste("Touches:",gTouches(p1,p3)))
	
	plot(p1,col='blue',border='blue',ylim=c(0,2.5));plot(p4,col='black',add=TRUE,pch=16)
	title(paste("Touches:",gTouches(p1,p4)))
	
	plot(p1,col='blue',border='blue',ylim=c(0,2.5));plot(l0,lwd=2,col='black',add=TRUE,pch=16)
	title(paste("Touches:",gTouches(p1,l0)))
	
	plot(l1,lwd=2,col='blue');plot(l2,lwd=2,col='black',add=TRUE,pch=16)
	title(paste("Touches:",gTouches(l1,l2)))
	
	plot(l1,lwd=2,col='blue');plot(l3,lwd=2,col='black',add=TRUE,pch=16)
	title(paste("Touches:",gTouches(l1,l3)))

Geometry Union

Description

Functions for joining intersecting geometries.

Usage

gUnionCascaded(spgeom, id = NULL)
gUnaryUnion(spgeom, id = NULL, checkValidity=NULL)
gLineMerge(spgeom, byid=FALSE, id = NULL)

Arguments

byid

Logical vector determining if the function should be applied across ids (TRUE) or the entire object (FALSE) for spgeom1 and spgeom2

id

Character vector defining id labels for the resulting geometries, if unspecified returned geometries will be labeled based on their parent geometries' labels; it may contain NA values for input objects not included in the union; it should define the memberships of the output Polygons objects

spgeom

sp Polygon(s) or Line(s) depending on the function used

checkValidity

default NULL, integer 0L (no action), 1L (check), 2L (check and try to buffer by zero distance to repair). If NULL, a value set to 0L for GEOS < 3.7.2, 1L for GEOS >= 3.7.2 is read from values assigned on load. Error meesages from GEOS do not say clearly which object fails if a topology exception is encountered. If this argument is > 0L, gIsValid is run on each in turn

Details

gUnionCascaded expects a single sp object of class SpatialPolygons with subgeometries which it unions together. gUnionCascaded can only dissolve MultiPolygon objects, so GeometryCollection objects to be dissolved, here a SpatialPolygons object, must be flattened a Polygons object; if GEOS version 3.3.0 is available, use gUnaryUnion.

gUnaryUnion expects a single sp object of class SpatialPolygons with subgeometries which it unions together; introduced in GEOS version 3.3.0, and handles GeometryCollection objects. If the id argument is used, it should be a character vector defining the memberships of the output Polygons objects, equal in length to the length of the polygons slot of spgeom.

gLineMerge is similar to gUnionCascaded but is written to work with lines, specifically it joins line segments with intersecting end points.

Note

Error messages from GEOS, in particular topology exceptions, report 0-based object order, so geom 0 is spgeom1, and geom 1 is spgeom2.

Author(s)

Roger Bivand & Colin Rundel

See Also

gDifference gIntersection gSymdifference

Examples

if (require(maptools)) {
nc1 <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1],
 proj4string=CRS("+proj=longlat +datum=NAD27"))
lps <- coordinates(nc1)
ID <- cut(lps[,1], quantile(lps[,1]), include.lowest=TRUE)
if (version_GEOS0() < "3.3.0") {
   reg4 <- gUnionCascaded(nc1, ID)
} else {
   reg4 <- gUnaryUnion(nc1, ID)
}
row.names(reg4)
par(mfrow=c(2,1))
plot(nc1)
plot(reg4)
par(mfrow=c(1,1))
}
gt <- GridTopology(c(0.05,0.05), c(0.1,0.1), c(2,2))
set.seed(1)
xv <- rnorm(length(coordinates(gt)[,1]))
xvs <- ifelse(xv > 0.2,1,0)
grd <- SpatialGridDataFrame(gt, data.frame(xvs))
spix <- as(grd, "SpatialPixelsDataFrame")
spol <- as(spix, "SpatialPolygonsDataFrame")
image(grd, axes=TRUE)
if (version_GEOS0() < "3.3.0") {
  spol1 <- gUnionCascaded(spol, as.character(spol$xvs))
} else {
  spol1 <- gUnaryUnion(spol, as.character(spol$xvs))
}
plot(spol1, add=TRUE)

Generics/Methods for polygon objects

Description

Some generic functions and methods for polygon objects

Usage

append.poly(x, y)
area.poly(object, ...)
get.pts(object)
get.bbox(x)
scale.poly(x, ...)
tristrip(x)
triangulate(x)

Arguments

x, object

A polygon object

y

A polygon object

...

Other arguments passed to methods

Details

The result of tristrip(x) is a list of two-column matrices. Each matrix is a tristrip, i.e. the rows are vertices of triangles, with each overlapping triple of rows corresponding to a separate triangle.

The result of triangulate(x) is a single two-column matrix. The rows are vertices of triangles, taken in non-overlapping triples.

Methods

append.poly

signature(x = "gpc.poly", y = "gpc.poly"): Combine all contours of two "gpc.poly" objects and return the combined polygon as a "gpc.poly" object.

area.poly

signature(object = "gpc.poly"): Compute and return the sum of the areas of all contours in a "gpc.poly" object.

scale.poly

signature(x = "gpc.poly"): Scale (divide) the x and y coordinates of a "gpc.poly" object by the amount xscale and yscale, respectively. Return a scaled "gpc.poly" object.

get.pts

signature(object = "gpc.poly"): Return the list of x and y coordinates of the vertices of a "gpc.poly" object.

get.bbox

signature(x = "gpc.poly"): Return the bounding box for a "gpc.poly" object.

tristrip

signature(x = "gpc.poly"): Return a tristrip list for a "gpc.poly" object.

triangulate

signature(x = "gpc.poly"): Return a matrix of vertices of a triangulation of a "gpc.poly" object.

Author(s)

Roger D. Peng; GPC Library by Alan Murta; tristrip additions by Duncan Murdoch

See Also

"gpc.poly" class documentation.

Examples

holepoly <- read.polyfile(system.file("poly-ex-gpc/hole-poly.txt",
 package ="rgeos"), nohole = FALSE)
area.poly(holepoly)
stopifnot(area.poly(holepoly) == 8)

Find spatial join or intersections

Description

Find spatial join or intersections

Usage

overGeomGeom(x, y, returnList = FALSE, fn = NULL, ..., minDimension = -1)
overGeomGeomDF(x, y, returnList = FALSE, fn = NULL, ..., minDimension = -1)

Arguments

x

see over

y

see over

returnList

see over

fn

see over

...

see over

minDimension

integer; if -1, gIntersects is used to find geometry intersections; if 0, 1 or 2, gRelate is used. if gRelate is used, intersecting geometries are ordered by the dimension of the intersection (2: area overlap; 1: line in common; 0: point in common), and minDimension determines the mininum dimension of intersection required.

Value

see over

Note

gRelate (minDimension > -1) is likely to be substantially slower than gIntersects.

Author(s)

Edzer Pebesma

Examples

p1 = readWKT("POLYGON((0 1,0.95 0.31,0.59 -0.81,-0.59 -0.81,-0.95 0.31,0 1))")
p2 = readWKT("POLYGON((2 2,-2 2,-2 -2,2 -2,2 2),(1 1,-1 1,-1 -1,1 -1,1 1))")

overGeomGeom(p1,p2)

Read/Write polygon data

Description

Read/Write polygon and contour information from/to a text file.

Usage

read.polyfile(filename, nohole = TRUE)
write.polyfile(poly, filename = "GPCpoly.txt")

Arguments

filename

the name of the file (a character string) from/to which data should be read/written.

nohole

Is this a polygon without holes?

poly

an object of class "gpc.poly"

Details

The text file representation of a polygon is of the following format:

<number of contours>
<number of points in first contour>
x1 y1
x2 y2
...
<number of points in second contour>
x1 y1
x2 y2
...

For example, a data file for a polygon with 2 contours (a four-sided object and a triangle) might look like:

2
4
1.0 1.0
1.0 2.0
3.4 3.21
10 11.2
3
21.0 11.2
22.3 99.2
4.5 5.4

The vertices of the polygon can be ordered either clockwise or counter-clockwise.

If a polygon has contours which are holes, then the format is slightly different. Basically, a flag is set to indicate that a particular contour is a hole. The format is

<number of contours>
<number of points in first contour>
<hole flag>
x1 y1
x2 y2
...
<number of points in second contour>
<hole flag>
x1 y1
x2 y2
...

The hole flag is either 1 to indicate a hole, or 0 for a regular contour. For example, a four-sided polygon with a triangular hole would be written as:

2
3
1
4.0 4.0
6.0 5.0
5.0 6.0
4
0
2.0 1.0
8.0 2.0
7.0 9.0
1.0 7.0

Value

If nohole is TRUE (the default) read.polyfile returns an object of class "gpc.poly.nohole". This object has the hole flag set to FALSE for all contours. If nohole is FALSE, then an object of class "gpc.poly" is returned.

write.polyfile does not return anything useful.

Author(s)

Roger D. Peng

See Also

gpc.poly-class, gpc.poly.nohole-class

Examples

## None right now.

Compute optimal label positions for polygons

Description

Compute optimal positions for placing labels inside polygons, and optionally plot the labels. Various algorithms for finding the ‘optimal’ label positions are supported.

Usage

polygonsLabel(pols, labels = NULL, method = c("maxdist",
              "buffer", "centroid", "random", "inpolygon")[1],
              gridpoints = 60, polypart = c("all", "largest")[1],
              cex = 1, doPlot = TRUE, ...)

Arguments

pols

Object of class, or deriving from, SpatialPolygons.

labels

Character vector of labels. Will be recycled to have the same number of elements as the number of polygons in pols. If labels is NULL or empty, the label box is taken as a square with sides equal to the current line height (see the cex argument).

method

The method(s) to use when finding label positions. Will be recycled. Valid methods are maxdist (currently the default), buffer, centroid, random and inpolygon.

gridpoints

Number of grid points to use for the initial grid search in the maxdist method.

polypart

Should all (default) or only the largest polygon part of each polygon in pols be used for the calculations? Will be recycled. Setting this to largest is very useful when labelling detailed coastlines of a country, consisting of a large polygon (where the label should be placed) and very many tiny islands, as it will greatly speed up the search for an optimal label position. But do note that this also removes any holes (e.g., lakes) before calculating the label position, so the labels are no longer guaranteed not to overlap a hole.

cex

Magnification factor for text labels. Is used both when plotting the labels and when calculating the label positions.

doPlot

Plot the labels on the current graphics device. Calls the text function internally.

...

Further arguments to be passed to text (e.g., col).

Details

There are no perfect definitions of ‘optimal’ label positions, but any such position should at least satisfy a few requirements: The label should be positioned wholly inside the polygon. It should also be far from any polygon edges. And, though more difficult to quantify, it should be positioned in the visual centre (or bulk) of the polygon. The algorithms implemented here seems to generally do a very good job of finding optimal (or at least ‘good’) label positions.

The maxdist method is currently the default, and tries to find the label position with a maximal distance from the polygon edges. More precisely, it finds a position where the minimal distance of any point on the (rectangular) label box to the polygon boundary is maximised. It does this by first trying a grid search, using gridpoints regular grid points on the polygon, and then doing local optimisation on the best grid point. The default grid is quite coarse, but usually gives good results in a short amount of time. But for very complicated (and narrow) polygons, it may help increasing gridpoints. Note that while this method gives good results for most natural polygons, e.g., country outlines, the theoretical optimal position is not necessarily unique, and this is sometimes seen when applying the method to regular polygons, like rectangles (see example below), where the resulting position may differ much from what one would judge to be the visual centre of the polygon.

The buffer method works by shrinking the polygon (using negative buffering) until the convex hull of the shrunken polygon can fit wholly inside the original polygon. The label position is then taken as the centroid of the shrunken polygon. This method usually gives excellent results, is surprisingly fast, and seems to capture the ‘visual centre’ idea of an optimal label position well. However, it does not guarantee that the label can fit wholly inside the polygon. (However, if it does not fit, there are usually no other better position either.)

The centroid method simply returns the centroid of each polygon. Note that although this is the geometrical/mathematical centre of the polygon, it may actually be positioned outside the polygon. For regular polygons (rectangles, hexagons), it gives perfect results. Internally, this method uses the coordinates function. There are three reasons this method is supported: To make it easy to find the centroid of the largest polygon part of a polygon (using the polypart argument), to make it easy to use the centroid algorithm along with other algorithms (using the vector nature of the method argument), and for completeness.

The random method returns a random position guaranteed to be inside the polygon. This will rarely be an optimal label position!

The inpolygon method finds an arbitrary position in the polygon. This position is usually quite similar to the centroid, but is guaranteed the be inside the polygon. Internally, the method uses the gPointOnSurface function.

Value

A two-colum matrix is returned, with each row containing the horizontal and vertical coordinates for the corresponding polygon. If doPlot is TRUE (the default), the labels are also plotted on the current graphics device, with the given value of cex (font size scaling).

Note

Note that both the labels, method and polypart arguments are vectors, so it’s possible to use different options for each polygon in the pols object.

Author(s)

Karl Ove Hufthammer, [email protected].

References

The buffer method was inspired by (but is slightly different from) the algorithm described in the paper Using Shape Analyses for Placement of Polygon Labels by Hoseok Kang and Shoreh Elhami, available at https://www.esri.com/training/ .

See Also

pointLabel

Examples

# Simple example with a single polygon
x = c(0, 1.8, 1.8, 1, 1, 3, 3, 2.2, 2.2, 4,
      4, 6, 6, 14, 14, 6, 6,  4, 4, 0, 0)
y = c(0, 0, -2, -2, -10, -10, -2, -2, 0, 0,
      1.8, 1.8, 1, 1, 3, 3, 2.2, 2.2, 4, 4, 0)
xy = data.frame(x,y)
library(sp)
xy.sp = SpatialPolygons(list(Polygons(list(Polygon(xy)), ID = "test")))
plot(xy.sp, col = "khaki")
polygonsLabel(xy.sp, "Hi!")


# Example with multiple polygons, text labels and colours
x1 = c(0, 4, 4, 0, 0)
y1 = c(0, 0, 4, 4, 0)
x2 = c(1, 1, 3, 3, 1)
y2 = c(-2, -10, -10, -2, -2)
x3 = c(6, 14, 14, 6, 6)
y3 = c(1, 1, 3, 3, 1)
xy.sp = SpatialPolygons(list(
  Polygons(list(Polygon(cbind(x1,y1))), ID = "test1"), # box
  Polygons(list(Polygon(cbind(x3,y3))), ID = "test3"), # wide
  Polygons(list(Polygon(cbind(x2,y2))), ID = "test2")  # high
))
plot(xy.sp, col=terrain.colors(3))
labels=c("Hi!", "A very long text string", "N\na\nr\nr\no\nw")

# Note that the label for the tall and narrow box is
# not necessarily centred vertically in the box.
# The reason is that method="maxdist" minimises the 
# maximum distance from the label box to the surrounding
# polygon, and this distance is not changed by moving
# the label vertically, as long the vertical distance
# to the polygon boundary is less than the horizontal
# distance. For regular polygons like this, the other
# label positions (e.g., method="buffer") work better.
polygonsLabel(xy.sp, labels, cex=.8,
              col = c('white', 'black', 'maroon'))


## Not run: 
## Example showing how bad the centroid 
## position can be on real maps.

# Needed libraries
if (require(maps) && require(maptools) && require(rgdal)) {

# Load map data and convert to spatial object
nmap = map("world", c("Norway", "Sweden", "Finland"),
           exact = TRUE, fill = TRUE, col = "transparent", plot = FALSE)
nmap.pol = map2SpatialPolygons(nmap, IDs = nmap$names,
                               proj4string = CRS("+init=epsg:4326"))
nmap.pol = spTransform(nmap.pol, CRS("+init=epsg:3035"))

# Plot map, centroid positions (red dots) and optimal
# label positions using the ‘buffer’ method.
plot(nmap.pol, col = "khaki")
nmap.centroids = polygonsLabel(nmap.pol, names(nmap.pol),
                               method = "centroid", doPlot = FALSE)
points(nmap.centroids, col = "red", pch=19)
polygonsLabel(nmap.pol, names(nmap.pol), method = "buffer", cex=.8)
}

## End(Not run)

Experimental Functions

Description

Functions still under development using the GEOS STRtree structure to find intersecting object component envelopes (bounding boxes).

Usage

gUnarySTRtreeQuery(obj)
    gBinarySTRtreeQuery(obj1, obj2)
    poly_findInBoxGEOS(spl, as_points=TRUE)

Arguments

obj, obj1, obj2

Objects inheriting from either SpatialPolygons or SpatialLines, obj2 may also inherit from SpatialPoints

spl

Object that inherits from the SpatialPolygons class

as_points

Logical value indicating if the polygon should be treated as points

Details

gUnarySTRtreeQuery and poly_findInBoxGEOS do the same thing, but poly_findInBoxGEOS uses the as_points argument to build the input envelopes from proper geometries. gUnarySTRtreeQuery and gBinarySTRtreeQuery build input envelopes by disregarding topology and reducing the coordinates to a multipoint representation. This permits the tree to be built and queried even when some geometries are invalid. gUnarySTRtreeQuery and poly_findInBoxGEOS return a list of length (n-1) of 1-based indices only for the “greater than i” indices. gBinarySTRtreeQuery returns a list of the length of obj2 with 1-based indices of obj1.

Author(s)

Roger Bivand & Colin Rundel

Examples

if (require(maptools)) {
xx <- readShapeSpatial(system.file("shapes/fylk-val-ll.shp",
 package="maptools")[1], proj4string=CRS("+proj=longlat +datum=WGS84"))
a0 <- gUnarySTRtreeQuery(xx)
a0
nc1 <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1],
 proj4string=CRS("+proj=longlat +datum=NAD27"))
a2 <- gUnarySTRtreeQuery(nc1)
#a3 <- poly_findInBoxGEOS(nc1)
#all.equal(a2, a3)
a2
pl <- slot(nc1, "polygons")[[4]]
a5 <- gUnarySTRtreeQuery(pl)
a5
SG <- Sobj_SpatialGrid(nc1, n=400)$SG
obj1 <- as(as(SG, "SpatialPixels"), "SpatialPolygons")
a4 <- gBinarySTRtreeQuery(nc1, obj1)
plot(nc1, col="orange", border="yellow")
plot(obj1, angle=sapply(a4, is.null)*45, density=20, lwd=0.5, add=TRUE)
set.seed(1)
pts <- spsample(nc1, n=10, type="random")
res <- gBinarySTRtreeQuery(nc1, pts)
}

RGEOS Polygon Hole Comment Functions

Description

Utility functions for assigning ownership of holes to parent polygons

Usage

createSPComment(sppoly,which=NULL,overwrite=TRUE)
	createPolygonsComment(poly)
        set_do_poly_check(value)
        get_do_poly_check()

Arguments

sppoly

Object that inherits from the SpatialPolygons class

which

Vector, which subset of geometries in sppoly should comment attributes be generated

overwrite

Logical, if a comment attribute already exists should it be overwritten

poly

Object of class Polygons

value

logical value to set “do_poly_check” option, default TRUE

Details

In order for rgeos to function properly it is necessary that all holes within a given POLYGON or MULTIPOLYGON geometry must belong to a specific polygon. The SpatialPolygons class implementation does not currently include this information. To work around this limitation rgeos uses an additional comment attribute on the Polygons class that indicates which hole belongs to which polygon.

Under the current implementation this comment is a text string of numbers separated by spaces where the order of the numbers corresponds to the order of the Polygon objects in the Polygons slot of the Polygons object. A 0 implies the Polygon object is a polygon, a non-zero number implies that the Polygon object is a hole with the value indicating the index of the Polygon that “owns” the hole.

createPolygonsComment attempts to create a valid comment for a Polygons object by assessing which polygons contain a given hole (using gContains). Ownership is assigned to the smallest polygon (by area) that contains the given hole. This is not guaranteed to generate valid polygons, always check the resulting objects for validity.

createSPComment attempts to create valid comments for all or a subset of polygons within a SpatialPolygons object. Refer to Bivand et al. (2013), pages 47-48 and 132-133 for a further discussion and SpatialPolygons

Warning: check polygons

The helper functions get and set the imposition of checking of objects inheriting from SpatialPolygons for proper assignment of hole interior rings to exterior rings in Polygons objects. The internal GEOS representation defines a POLYGON object as a collection of only one exterior ring and from zero to many interior rings, so an sp Polygons object corresponds to a GEOS MULTIPOLYGON object, but without proper hole assignment. By default do_poly_check is TRUE; if it is set to FALSE using set_do_poly_check(FALSE), and the Polygons object is not valid in GEOS terms, GEOS may crash R, which is why checks are imposed by default.

The details below show how hole assignment is handled in the package; here we assume that the hole status slots of all Polygon objects in a given Polygons object are set correctly. In the examples below, we use a data set from maptools which has the holes correctly assigned, and we see that the SpatialPolygons object is geometrically valid both initially and after removing the comment attribute on the only Polygons object in usa - regenerating internally within rgeos from the hole status slots since do_poly_check is TRUE.

If we modify usa by setting all hole status slots to FALSE, the SpatialPolygons object is geometrically invalid even though a comment attribute can be created - the function createSPComment is deceived by the incorrect hole status slots. To rectify this, we use checkPolygonsHoles from maptools on each Polygons object. This function calls gContains, gContainsProperly, gEquals and createPolygonsComment from rgeos to check whether the hole status slots are set correctly. Experience shows that many imported datasets from for example publically provided shapefiles have incorrect hole status values. Running checkPolygonsHoles is time-consuming when the number of member Polygon objects is large - attempts will be made to make this more efficient.

Warning: planar geometries

The geometries handled by GEOS are assumed to be planar, so that any rgeos functions making measurements will give incorrect results when used on geographical coordinates measured in decimal degrees. Topological functions may work satisfactorily, but will not understand spherical wrap-around.

Author(s)

Roger Bivand & Colin Rundel

References

Roger Bivand, Edzer Pebesma and Virgilio Gomez-Rubio, 2013. Applied spatial data analysis with R, Second edition. Springer, NY. https://asdar-book.org/

Examples

library(sp)
p1 <- Polygon(cbind(x=c(0, 0, 10, 10, 0), y=c(0, 10, 10, 0, 0)), hole=FALSE) # I
p2 <- Polygon(cbind(x=c(3, 3, 7, 7, 3), y=c(3, 7, 7, 3, 3)), hole=TRUE) # H
p8 <- Polygon(cbind(x=c(1, 1, 2, 2, 1), y=c(1, 2, 2, 1, 1)), hole=TRUE) # H
p9 <- Polygon(cbind(x=c(1, 1, 2, 2, 1), y=c(5, 6, 6, 5, 5)), hole=TRUE) # H
p3 <- Polygon(cbind(x=c(20, 20, 30, 30, 20), y=c(20, 30, 30, 20, 20)),
 hole=FALSE) # I
p4 <- Polygon(cbind(x=c(21, 21, 29, 29, 21), y=c(21, 29, 29, 21, 21)),
 hole=TRUE) # H
p5 <- Polygon(cbind(x=c(22, 22, 28, 28, 22), y=c(22, 28, 28, 22, 22)),
 hole=FALSE) # I
p6 <- Polygon(cbind(x=c(23, 23, 27, 27, 23), y=c(23, 27, 27, 23, 23)),
 hole=TRUE) # H
p7 <- Polygon(cbind(x=c(13, 13, 17, 17, 13), y=c(13, 17, 17, 13, 13)),
 hole=FALSE) # I
p10 <- Polygon(cbind(x=c(24, 24, 26, 26, 24), y=c(24, 26, 26, 24, 24)),
 hole=FALSE) # I
p11 <- Polygon(cbind(x=c(24.25, 24.25, 25.75, 25.75, 24.25),
 y=c(24.25, 25.75, 25.75, 24.25, 24.25)), hole=TRUE) # H
p12 <- Polygon(cbind(x=c(24.5, 24.5, 25.5, 25.5, 24.5),
 y=c(24.5, 25.5, 25.5, 24.5, 24.5)), hole=FALSE) # I
p13 <- Polygon(cbind(x=c(24.75, 24.75, 25.25, 25.25, 24.75),
 y=c(24.75, 25.25, 25.25, 24.75, 24.75)), hole=TRUE) # H
	
lp <- list(p1, p2, p13, p7, p6, p5, p4, p3, p8, p11, p12, p9, p10)
#           1   2    3   4   5   6   7   8   9   10   11  12   13
#           0   1   11   0   6   0   8   0   1   13    0   1    0
#           I   H    H   I   H   I   H   I   H    H    I   H    I
pls <- Polygons(lp, ID="1")
comment(pls)
	
comment(pls) = createPolygonsComment(pls)
comment(pls)
	
	
plot(SpatialPolygons(list(pls)), col="magenta", pbg="cyan")
 title(xlab="Hole slot values before checking")
## Not run: 
# running this illustration may be time-consuming
if (require(maptools)) {
data(wrld_simpl)
usa <- wrld_simpl[wrld_simpl$ISO3=="USA",]
lapply(slot(usa, "polygons"), comment)
gIsValid(usa, reason=TRUE)
comment(slot(usa, "polygons")[[1]]) <- NULL
lapply(slot(usa, "polygons"), comment)
gIsValid(usa)
any(c(sapply(slot(usa, "polygons"),
 function(x) sapply(slot(x, "Polygons"), slot, "hole"))))
lapply(slot(createSPComment(usa), "polygons"), comment)
usa1 <- usa
Pls <- slot(usa1, "polygons")
pls <- slot(Pls[[1]], "Polygons")
pls1 <- lapply(pls, function(p) {slot(p, "hole") <- FALSE; return(p)})
slot(Pls[[1]], "Polygons") <- pls1
slot(usa1, "polygons") <- Pls
any(c(sapply(slot(usa1, "polygons"),
 function(x) sapply(slot(x, "Polygons"), slot, "hole"))))
lapply(slot(createSPComment(usa1), "polygons"), comment)
gIsValid(usa1, reason=TRUE)
Pls <- slot(usa1, "polygons")
Pls1 <- lapply(Pls, checkPolygonsHoles)
slot(usa1, "polygons") <- Pls1
lapply(slot(usa1, "polygons"), comment)
gIsValid(usa1, reason=TRUE)
}

## End(Not run)

RGEOS Utility Functions

Description

Utility functions for the RGEOS package

Usage

getScale()
	setScale(scale=100000000)
	translate(spgeom)
	checkP4S(p4s)
        version_GEOS(runtime = TRUE)
        rgeos_extSoftVersion()
        version_GEOS0()
        set_RGEOS_polyThreshold(value)
        get_RGEOS_polyThreshold()
        set_RGEOS_warnSlivers(value)
        get_RGEOS_warnSlivers()
        set_RGEOS_dropSlivers(value)
        get_RGEOS_dropSlivers()
        get_RGEOS_CheckValidity()
        set_RGEOS_CheckValidity(value)

Arguments

scale

Numeric value determining the precision of translated geometries

spgeom

sp object as defined in package sp

p4s

Either a character string or an object of class CRS

runtime

default TRUE; if FALSE, installation GEOS version

value

the value to be passed to an RGEOS option in its environment

Details

getScale and setScale are used to get and set the scale option in the rgeos environment. This option is used to determine the precision of coordinates when translating to and from GEOS C objects. Precision is defined as 1 / scale. The final example is a use case reported by Mao-Gui Hu, who has also made the objects available, where the default scale defeats an intended line intersection operation; changing the scale temporarily resoves the issue.

In order to permit polygon slivers to be detected, reported and dropped, the user may set a numeric value for polyThreshold and logical values for warnSlivers and dropSlivers. By default, the threshold is 0.0, and warning and dropping are FALSE. To detect slivers, the threshold may be set to a small value and warnSlivers set to TRUE. To drop slivers from returned Polygons and Polygon objects, set dropSlivers to TRUE for a non-zero threshold.

translate is a testing function which translates the sp object into a GEOS C object and then back into an sp object and is used extensively in the translation unit tests. In all cases it is expected that spgeom and translate(spgeom) should be identical.

checkP4S is a validation function for proj4strings and is used in testing.

version_GEOS returns the full runtime version string, and version_GEOS0 only the GEOS version number. set_RGEOS_CheckValidity takes an integer 0:2, 0L is no operation, 1L is check validity, and 2L is check and if invalid try to repair with a zero width buffer.

Author(s)

Roger Bivand & Colin Rundel

Examples

readWKT("POINT(1.5 1.5)")

	# With scale set to 1, the following point will be rounded
	setScale(1)
	readWKT("POINT(1.5 1.5)")
	
	setScale(10)
	readWKT("POINT(1.5 1.5)")
	
	getScale()
	# Set scale option back to default
	setScale()
	
	
	
	# scale option only affect objects when they are translated through rgeos
	setScale(1)
	library(sp)
	SpatialPoints(data.frame(x=1.5,y=1.5))
	translate( SpatialPoints(data.frame(x=1.5,y=1.5)) )
	
	setScale()

        # added example of scale impact on intersection 120905
sline1 <- readWKT(readLines(system.file("wkts/sline1.wkt", package="rgeos")))
sline2 <- readWKT(readLines(system.file("wkts/sline2.wkt", package="rgeos")))
rslt <- gIntersection(sline1, sline2)
class(rslt)
getScale()
setScale(1e+6)
rslt <- gIntersection(sline1, sline2)
class(rslt)
sapply(slot(rslt, "lines"), function(x) length(slot(x, "Lines")))
rslt <- gLineMerge(rslt, byid=TRUE)
sapply(slot(rslt, "lines"), function(x) length(slot(x, "Lines")))
setScale()
get_RGEOS_dropSlivers()
get_RGEOS_warnSlivers()
get_RGEOS_polyThreshold()
# Robert Hijmans difficult intersection case
load(system.file("test_cases/polys.RData", package="rgeos"))
try(res <- gIntersection(a, b, byid=TRUE))
res <- gIntersection(a, b, byid=TRUE, drop_lower_td=TRUE)
sort(unlist(sapply(slot(res, "polygons"), function(p) sapply(slot(p, "Polygons"), slot, "area"))))
oT <- get_RGEOS_polyThreshold()
oW <- get_RGEOS_warnSlivers()
oD <- get_RGEOS_dropSlivers()
set_RGEOS_polyThreshold(1e-3)
set_RGEOS_warnSlivers(TRUE)
res1 <- gIntersection(a, b, byid=TRUE, drop_lower_td=TRUE)
sort(unlist(sapply(slot(res, "polygons"), function(p) sapply(slot(p, "Polygons"), slot, "area"))))
set_RGEOS_dropSlivers(TRUE)
res2 <- gIntersection(a, b, byid=TRUE, drop_lower_td=TRUE)
sort(unlist(sapply(slot(res, "polygons"), function(p) sapply(slot(p, "Polygons"), slot, "area"))))
set_RGEOS_dropSlivers(FALSE)
oo <- gUnaryUnion(res1, c(rep("1", 3), "2", "3", "4"), checkValidity=2L)
unlist(sapply(slot(oo, "polygons"), function(p) sapply(slot(p, "Polygons"), slot, "area")))
ooo <- gIntersection(b, oo, byid=TRUE, checkValidity=2L)
gArea(ooo, byid=TRUE)
unlist(sapply(slot(ooo, "polygons"), function(p) sapply(slot(p, "Polygons"), slot, "area")))
set_RGEOS_dropSlivers(TRUE)
ooo <- gIntersection(b, oo, byid=TRUE, checkValidity=2L)
gArea(ooo, byid=TRUE)
unlist(sapply(slot(ooo, "polygons"), function(p) sapply(slot(p, "Polygons"), slot, "area")))
set_RGEOS_polyThreshold(oT)
set_RGEOS_warnSlivers(oW)
set_RGEOS_dropSlivers(oD)

RGEOS WKT Functions

Description

Functions for reading and writing Well Known Text (WKT)

Usage

readWKT(text, id = NULL, p4s = NULL)
	writeWKT(spgeom, byid = FALSE)

Arguments

text

character string of WKT

id

character vector of unique ids to label geometries. Length must match the number of subgeometries in the WKT

p4s

Either a character string or an object of class CRS

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

Details

readWKT processes the given WKT string and returns an appropriate sp geometry object. If id is not specified then geometries will be labeled by their index position. Because no sp Spatial object may be empty, readWKT is not permitted to create an empty object.

writeWKT converts an sp geometry object to a GEOS C object which is then written out as a WKT string. If byid is TRUE then each subgeometry is individually converted to a WKT string.

Author(s)

Colin Rundel

References

Additional information on WKT Simple Feature Specification can be found at the following locations:

https://www.ogc.org/standard/sfs/

https://en.wikipedia.org/wiki/Well-known_text

https://en.wikipedia.org/wiki/Simple_Features

Examples

g1=readWKT("POINT(6 10)")
g2=readWKT("LINESTRING(3 4,10 50,20 25)")
g3=readWKT("POLYGON((1 1,5 1,5 5,1 5,1 1),(2 2,2 3,3 3,3 2,2 2))")
g4=readWKT("MULTIPOINT((3.5 5.6),(4.8 10.5))")
g5=readWKT("MULTILINESTRING((3 4,10 50,20 25),(-5 -8,-10 -8,-15 -4))")
g6=readWKT("MULTIPOLYGON(((1 1,5 1,5 5,1 5,1 1),(2 2,2 3,3 3,3 2,2 2)),((6 3,9 2,9 4,6 3)))")
try(readWKT("POINT EMPTY"))
try(readWKT("MULTIPOLYGON EMPTY"))
g9=readWKT("GEOMETRYCOLLECTION(POINT(4 6),LINESTRING(4 6,7 10))")

writeWKT(g1)
writeWKT(g2)
writeWKT(g3)
writeWKT(g4)
writeWKT(g5)
writeWKT(g6)
writeWKT(g9,byid=FALSE)
writeWKT(g9,byid=TRUE)

Deprecated functions and methods

Description

Cumulative deprecated functions and methods from rgeos prior to package retirement/archiving during 2023.

Usage

gBuffer(spgeom, byid=FALSE, id=NULL, width=1.0, quadsegs=5, capStyle="ROUND",
 joinStyle="ROUND", mitreLimit=1.0)
gDifference(spgeom1, spgeom2, byid=FALSE, id=NULL, drop_lower_td=FALSE,
 unaryUnion_if_byid_false=TRUE, checkValidity=NULL)
gSymdifference(spgeom1, spgeom2, byid=FALSE, id=NULL, drop_lower_td=FALSE,
 unaryUnion_if_byid_false=TRUE, checkValidity=NULL)
gIntersection(spgeom1, spgeom2, byid=FALSE, id=NULL, drop_not_poly,
 drop_lower_td=FALSE, unaryUnion_if_byid_false=TRUE, checkValidity=NULL)
gUnion(spgeom1, spgeom2, byid=FALSE, id=NULL, drop_lower_td=FALSE,
 unaryUnion_if_byid_false=TRUE, checkValidity=NULL)

Arguments

spgeom

sp object as defined in package sp

byid

Logical determining if the function should be applied across subgeometries (TRUE) or the entire object (FALSE)

id

Character vector defining id labels for the resulting geometries, if unspecified returned geometries will be labeled based on their parent geometries' labels.

width

Distance from original geometry to include in the new geometry. Negative values are allowed. Either a numeric vector of length 1 when byid is FALSE; if byid is TRUE: of length 1 replicated to the number of input geometries, or of length equal to the number of input geometries

quadsegs

Number of line segments to use to approximate a quarter circle.

capStyle

Style of cap to use at the ends of the geometry. Allowed values: ROUND,FLAT,SQUARE

joinStyle

Style to use for joints in the geometry. Allowed values: ROUND,MITRE,BEVEL

mitreLimit

Numerical value that specifies how far a joint can extend if a mitre join style is used.

spgeom1, spgeom2

sp objects as defined in package sp

drop_lower_td

default FALSE; if TRUE, objects will be dropped from output GEOMETRYCOLLECTION objects to simplify output if their topological dinension is less than the minimum topological dinension of the input objects.

unaryUnion_if_byid_false

default TRUE; if byid takes a FALSE in either position, the subgeometries are combined first to avoid possible topology exceptions (change in 0.3-13, previous behaviour did not combine subgeometries, and may be achieved by setting this argument FALSE

checkValidity

default NULL, integer 0L (no action), 1L (check), 2L (check and try to buffer by zero distance to repair). If NULL, a value set to 0L for GEOS < 3.7.2, 1L for GEOS >= 3.7.2 is read from values assigned on load. Error meesages from GEOS do not say clearly which object fails if a topology exception is encountered. If this argument is > 0L, gIsValid is run on each in turn

drop_not_poly

deprecated argument, use drop_lower_td

Examples

p1 = readWKT("POLYGON((0 1,0.95 0.31,0.59 -0.81,-0.59 -0.81,-0.95 0.31,0 1))")
p2 = readWKT("POLYGON((2 2,-2 2,-2 -2,2 -2,2 2),(1 1,-1 1,-1 -1,1 -1,1 1))")

par(mfrow=c(2,3))
plot(gBuffer(p1,width=-0.2),col='black',xlim=c(-1.5,1.5),ylim=c(-1.5,1.5))
plot(p1,border='blue',lwd=2,add=TRUE);title("width: -0.2")
plot(gBuffer(p1,width=0),col='black',xlim=c(-1.5,1.5),ylim=c(-1.5,1.5))
plot(p1,border='blue',lwd=2,add=TRUE);title("width: 0")
plot(gBuffer(p1,width=0.2),col='black',xlim=c(-1.5,1.5),ylim=c(-1.5,1.5))
plot(p1,border='blue',lwd=2,add=TRUE);title("width: 0.2")

plot(gBuffer(p2,width=-0.2),col='black',pbg='white',xlim=c(-2.5,2.5),ylim=c(-2.5,2.5))
plot(p2,border='blue',lwd=2,add=TRUE);title("width: -0.2")
plot(gBuffer(p2,width=0),col='black',pbg='white',xlim=c(-2.5,2.5),ylim=c(-2.5,2.5))
plot(p2,border='blue',lwd=2,add=TRUE);title("width: 0")
plot(gBuffer(p2,width=0.2),col='black',pbg='white',xlim=c(-2.5,2.5),ylim=c(-2.5,2.5))
plot(p2,border='blue',lwd=2,add=TRUE);title("width: 0.2")

p3 <- readWKT(paste("GEOMETRYCOLLECTION(",
 "POLYGON((0 1,0.95 0.31,0.59 -0.81,-0.59 -0.81,-0.95 0.31,0 1)),",
 "POLYGON((2 2,-2 2,-2 -2,2 -2,2 2),(1 1,-1 1,-1 -1,1 -1,1 1)))"))

par(mfrow=c(1,1))
plot(gBuffer(p3, byid=TRUE, width=c(-0.2, -0.1)),col='black',pbg='white',
xlim=c(-2.5,2.5),ylim=c(-2.5,2.5))
plot(p3,border=c('blue', 'red'),lwd=2,add=TRUE);title("width: -0.2, -0.1")
library(sp)
p3df <- SpatialPolygonsDataFrame(p3, data=data.frame(i=1:length(p3),
 row.names=row.names(p3)))
dim(p3df)
row.names(p3df)
dropEmpty = gBuffer(p3df, byid=TRUE, id=letters[1:nrow(p3df)], width=c(-1, 0))
dim(dropEmpty)
row.names(dropEmpty)
row.names(slot(dropEmpty, "data"))
plot(dropEmpty, col='black', pbg='white', xlim=c(-2.5,2.5),ylim=c(-2.5,2.5))
plot(p3df,border=c('blue'),lwd=2,add=TRUE);title("width: -1, 0")
par(mfrow=c(2,3))


#Style options
l1 = readWKT("LINESTRING(0 0,1 5,4 5,5 2,8 2,9 4,4 6.5)")
par(mfrow=c(2,3))
plot(gBuffer(l1,capStyle="ROUND"));plot(l1,col='blue',add=TRUE);title("capStyle: ROUND")
plot(gBuffer(l1,capStyle="FLAT"));plot(l1,col='blue',add=TRUE);title("capStyle: FLAT")
plot(gBuffer(l1,capStyle="SQUARE"));plot(l1,col='blue',add=TRUE);title("capStyle: SQUARE")

plot(gBuffer(l1,quadsegs=1));plot(l1,col='blue',add=TRUE);title("quadsegs: 1")
plot(gBuffer(l1,quadsegs=2));plot(l1,col='blue',add=TRUE);title("quadsegs: 2")
plot(gBuffer(l1,quadsegs=5));plot(l1,col='blue',add=TRUE);title("quadsegs: 5")



l2 = readWKT("LINESTRING(0 0,1 5,3 2)")
par(mfrow=c(2,3))
plot(gBuffer(l2,joinStyle="ROUND"));plot(l2,col='blue',add=TRUE);title("joinStyle: ROUND")
plot(gBuffer(l2,joinStyle="MITRE"));plot(l2,col='blue',add=TRUE);title("joinStyle: MITRE")
plot(gBuffer(l2,joinStyle="BEVEL"));plot(l2,col='blue',add=TRUE);title("joinStyle: BEVEL")

plot(gBuffer(l2,joinStyle="MITRE",mitreLimit=0.5));plot(l2,col='blue',add=TRUE)
 title("mitreLimit: 0.5")
plot(gBuffer(l2,joinStyle="MITRE",mitreLimit=1));plot(l2,col='blue',add=TRUE)
 title("mitreLimit: 1")
plot(gBuffer(l2,joinStyle="MITRE",mitreLimit=3));plot(l2,col='blue',add=TRUE)
 title("mitreLimit: 3")
x = readWKT("POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0))")
y = readWKT("POLYGON ((3 3, 7 3, 7 7, 3 7, 3 3))")

d = gDifference(x,y)
plot(d,col='red',pbg='white')

# Empty geometry since y is completely contained with x
d2 = gDifference(y,x)
pol <- readWKT(paste("POLYGON((-180 -20, -140 55, 10 0, -140 -60, -180 -20),",
 "(-150 -20, -100 -10, -110 20, -150 -20))"))
library(sp)
GT <- GridTopology(c(-175, -85), c(10, 10), c(36, 18))
gr <- as(as(SpatialGrid(GT), "SpatialPixels"), "SpatialPolygons")
try(res <- gIntersection(pol, gr, byid=TRUE))
res <- gIntersection(pol, gr, byid=TRUE, drop_lower_td=TRUE)
# Robert Hijmans difficult intersection case
load(system.file("test_cases/polys.RData", package="rgeos"))
try(res <- gIntersection(a, b, byid=TRUE))
res <- gIntersection(a, b, byid=TRUE, drop_lower_td=TRUE)
unlist(sapply(slot(res, "polygons"), function(p) sapply(slot(p, "Polygons"), slot, "area")))
# example from Pius Korner 2015-10-25
poly1 <- SpatialPolygons(list(Polygons(list(Polygon(coords=matrix(c(0, 0, 2, 2, 0, 1, 1, 0),
 ncol=2, byrow=FALSE))), ID=c("a")), Polygons(list(Polygon(coords=matrix(c(0, 0, 2, 2, 2, 3, 3, 2),
 ncol=2, byrow=FALSE))), ID=c("b"))))
poly2 <- SpatialPolygons(list(Polygons(list(Polygon(coords=matrix(c(0, 0, 2, 2,
 1, 1, 1, 3, 3, 0, 0, 2), ncol=2, byrow=FALSE))), ID=c("c"))))
plot(poly1, border="orange")
plot(poly2, border="blue", add=TRUE, lty=2, density=8, angle=30, col="blue")
gI <- gIntersection(poly1, poly2, byid=TRUE, drop_lower_td=TRUE)
plot(gI, add=TRUE, border="red", lwd=3)
oT <- get_RGEOS_polyThreshold()
oW <- get_RGEOS_warnSlivers()
oD <- get_RGEOS_dropSlivers()
set_RGEOS_polyThreshold(1e-3)
set_RGEOS_warnSlivers(TRUE)
res1 <- gIntersection(a, b, byid=TRUE, drop_lower_td=TRUE)
unlist(sapply(slot(res1, "polygons"), function(p) sapply(slot(p, "Polygons"), slot, "area")))
set_RGEOS_dropSlivers(TRUE)
res2 <- gIntersection(a, b, byid=TRUE, drop_lower_td=TRUE)
unlist(sapply(slot(res2, "polygons"), function(p) sapply(slot(p, "Polygons"), slot, "area")))
set_RGEOS_dropSlivers(FALSE)
oo <- gUnaryUnion(res1, c(rep("1", 3), "2", "3", "4"), checkValidity=2L)
unlist(sapply(slot(oo, "polygons"), function(p) sapply(slot(p, "Polygons"), slot, "area")))
ooo <- gIntersection(b, oo, byid=TRUE, checkValidity=2L)
gArea(ooo, byid=TRUE)
unlist(sapply(slot(ooo, "polygons"), function(p) sapply(slot(p, "Polygons"), slot, "area")))
set_RGEOS_dropSlivers(TRUE)
ooo <- gIntersection(b, oo, byid=TRUE, checkValidity=2L)
gArea(ooo, byid=TRUE)
unlist(sapply(slot(ooo, "polygons"), function(p) sapply(slot(p, "Polygons"), slot, "area")))
set_RGEOS_polyThreshold(oT)
set_RGEOS_warnSlivers(oW)
set_RGEOS_dropSlivers(oD)
# see thread https://stat.ethz.ch/pipermail/r-sig-geo/2015-September/023468.html
Pol1=rbind(c(0,0),c(0,10),c(10,10),c(10,0),c(0,0))
Pol2=rbind(c(0,0),c(10,0),c(10,-10),c(0,-10),c(0,0))
library(sp)
Pols1=Polygons(list(Polygon(Pol1)),"Pols1")
Pols2=Polygons(list(Polygon(Pol2)),"Pols2")
MyLay=SpatialPolygons(list(Pols1,Pols2))
Pol1l=Pol1+0.5
Pol2l=Pol2+0.5
Pols1l=Polygons(list(Polygon(Pol1l)),"Pols1l")
Pols2l=Polygons(list(Polygon(Pol2l)),"Pols2l")
MyLayl=SpatialPolygons(list(Pols1l,Pols2l))
inter=gIntersection(MyLay, MyLayl)
plot(MyLay)
plot(MyLayl,add=TRUE)
plot(inter, add=TRUE, border="green")
try(gIntersection(MyLay, MyLayl, unaryUnion_if_byid_false=FALSE))
Pol1=rbind(c(0,0),c(0,1),c(1,1),c(1,0),c(0,0))
Pol2=rbind(c(0,0),c(1,0),c(1,-1),c(0,-1),c(0,0))
Pols1=Polygons(list(Polygon(Pol1)),"Pols1")
Pols2=Polygons(list(Polygon(Pol2)),"Pols2")
MyLay=SpatialPolygons(list(Pols1,Pols2))
Pol1l=Pol1+0.1
Pol2l=Pol2+0.1
Pols1l=Polygons(list(Polygon(Pol1l)),"Pols1l")
Pols2l=Polygons(list(Polygon(Pol2l)),"Pols2l")
MyLayl=SpatialPolygons(list(Pols1l,Pols2l))
inter=gIntersection(MyLay, MyLayl, unaryUnion_if_byid_false=FALSE)
gEquals(inter, MyLay)
inter1=gIntersection(MyLay, MyLayl, unaryUnion_if_byid_false=TRUE)
gEquals(inter1, MyLay)
gEquals(inter, inter1)
plot(MyLay, ylim=c(-1, 1.1))
plot(MyLayl, add=TRUE)
plot(inter, angle=45, density=10, add=TRUE)
plot(inter1, angle=135, density=10, add=TRUE)
inter2=gIntersection(MyLay, MyLayl)
gEquals(inter2, MyLay)
gEquals(inter1, inter2)
x = readWKT("POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0))")
y = readWKT("POLYGON ((5 5, 15 5, 15 15, 5 15, 5 5))")

d = gSymdifference(x,y)
plot(d,col='red',pbg='white')

Class "Ring"

Description

class for linear ring

Objects from the Class

Objects can be created by calls to the function Ring

Slots

coords:

Object of class "matrix"; coordinates of the ring; first point should equal the last point

ID:

Object of class "character"; unique identifier string

Methods

Methods defined with class "Ring" in the signature:

bbox

signature(obj = "Ring"): retrieves the bbox element

coordinates

signature(object = "Ring"): retrieves the coords element from Ring objects in rings slot

coordnames

signature(object = "Ring"): retrieves coordinate names

coerce

signature(from = "Ring", to = "SpatialPoints"): ...

Author(s)

Colin Rundel

See Also

Ring

Examples

#NONE

create SpatialCollections

Description

create object of class SpatialCollections

Usage

SpatialCollections(points=NULL, lines=NULL, rings=NULL, polygons=NULL,
 plotOrder=c(4,3,2,1), proj4string=CRS(as.character(NA)))

Arguments

points

list with objects of class SpatialPoints-class

lines

list with objects of class SpatialLines-class

rings

list with objects of class SpatialRings-class

polygons

list with objects of class SpatialPolygons-class

plotOrder

numeric vector of length 4 that determines the order in which the geometries will be plotted. By default polygons will be plotted followed by rings, then lines and finally points.

proj4string

Object of class "CRS" holding a valid proj4 string

Value

SpatialCollections returns object of class SpatialCollections

See Also

SpatialCollections-class SpatialPoints-class SpatialLines-class SpatialRings-class SpatialPolygons-class


Class "SpatialCollections"

Description

class to hold SpatialPoints, SpatialLines, SpatialRings, and SpatialPolygons (without attributes)

Objects from the Class

Objects can be created by calls to the function SpatialCollections

Slots

pointobj:

Object of class SpatialPoints or NULL

lineobj:

Object of class SpatialLines or NULL

ringobj:

Object of class SpatialRings or NULL

polyobj:

Object of class SpatialPolygons or NULL

plotOrder:

Numeric vector of length 4

Extends

Class "Spatial", directly.

Methods

Methods defined with class "SpatialCollections" in the signature:

plot

signature(x = "SpatialCollections", y = "missing"): plot objects within the SpatialCollections object in the order specified by plotOrder slot

row.names

signature(object = "SpatialCollections"): retrieves the ID elements from non-NULL geometry slots

Author(s)

Colin Rundel

See Also

SpatialCollections SpatialPoints SpatialLines SpatialRings SpatialPolygons

Examples

#NONE

create SpatialRings or SpatialRingsDataFrame

Description

create objects of class SpatialRings or SpatialRingsDataFrame

Usage

Ring(coords,ID=as.character(NA))
SpatialRings(RingList, proj4string=CRS(as.character(NA)))
SpatialRingsDataFrame(sr, data, match.ID = TRUE)

Arguments

coords

2-column numeric matrix with coordinates; first point (row) should equal last coordinates (row); if the hole argument is not given, the status of the polygon as a hole or an island will be taken from the ring direction, with clockwise meaning island, and counter-clockwise meaning hole

ID

character vector of length one with identifier

RingList

list with objects of class Ring-class

proj4string

Object of class "CRS" holding a valid proj4 string

sr

object of class SpatialRings-class

data

object of class data.frame; the number of rows in data should equal the number of Lines elements in sl

match.ID

logical: (default TRUE): match SpatialLines member Lines ID slot values with data frame row names, and re-order the data frame rows if necessary

Value

Ring returns object of class Ring SpatialRings returns object of class SpatialRings SpatialRingsDataFrame returns object of class SpatialRingsDataFrame

See Also

Ring-class SpatialRings-class SpatialRingsDataFrame-class


Class "SpatialRings"

Description

class to hold linear ring topology (without attributes)

Objects from the Class

Objects can be created by calls to the function SpatialRings

Slots

rings:

Object of class "list"; list elements are all of class Ring-class

bbox:

Object of class "matrix"; see Spatial-class

proj4string:

Object of class "CRS"; see CRS-class

Extends

Class "Spatial", directly.

Methods

Methods defined with class "SpatialRings" in the signature:

[

signature(obj = "SpatialRings"): select subset of (sets of) rings; NAs are not permitted in the row index

plot

signature(x = "SpatialRings", y = "missing"): plot rings in SpatialRings object

bbox

signature(obj = "SpatialRings"): retrieves the bbox element

coordinates

signature(object = "SpatialRings"): retrieves the coords element from Ring objects in rings slot

coordnames

signature(object = "SpatialRings"): retrieves coordinate names

row.names

signature(object = "SpatialRings"): retrieves the ID element from Ring objects in rings slot

spChFIDs

signature(obj="SpatialRings", x="character"): replaces ID element

coerce

signature(from = "SpatialRings", to = "SpatialPoints"): ...

Author(s)

Colin Rundel

See Also

SpatialRings Ring-class

Examples

#NONE

Class "SpatialRingsDataFrame"

Description

class to hold linear ring topology (without attributes)

Objects from the Class

Objects can be created by calls to the function SpatialRingsDataFrame

Slots

data:

Object of class "data.frame"; attribute table

rings:

Object of class "list"; list elements are all of class Ring-class

bbox:

Object of class "matrix"; see Spatial-class

proj4string:

Object of class "CRS"; see CRS-class

Extends

Class "SpatialRings", directly. Class "Spatial", by class "SpatialRings".

Methods

Methods defined with class "SpatialRingsDataFrame" in the signature:

[

signature(obj = "SpatialRingsDataFrame"): select subset of (sets of) rings; NAs are not permitted in the row index

plot

signature(x = "SpatialRingsDataFrame", y = "missing"): plot rings in SpatialRingsDataFrame object

bbox

signature(obj = "SpatialRingsDataFrame"): retrieves the bbox element

coordinates

signature(object = "SpatialRingsDataFrame"): retrieves the coords element from Ring objects in rings slot

coordnames

signature(object = "SpatialRingsDataFrame"): retrieves coordinate names

row.names

signature(object = "SpatialRingsDataFrame"): retrieves the ID element from Ring objects in rings slot

spChFIDs

signature(obj="SpatialRingsDataFrame", x="character"): replaces ID element

names

signature(object = "SpatialRingsDataFrame"): retrieves names from data element

dim

signature(object = "SpatialRingsDataFrame"): retrieves dimensions of data element

coerce

signature(from = "SpatialRingsDataFrame", to = "SpatialPoints"): ...

coerce

signature(from = "SpatialRingsDataFrame", to = "SpatialRings"): ...

coerce

signature(from = "SpatialRingsDataFrame", to = "data.frame"): ...

Author(s)

Colin Rundel

See Also

SpatialRingsDataFrame Ring-class SpatialRings-class

Examples

#NONE